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DeLuca, Christopher

Numerical Modeling and Optimization of Mechanically Active Electrochemical Systems

Supervised by Dr. Kurt Maute and Dr. Carlos Felippa

This work is primarily motivated by the hope that Silicon (Si) can be utilized

in Lithium (Li) ion batteries to enable an order of magnitude capacity increase if Li-Si

systems can be better understood. In order to create a valuable tool that could be used

to study a wide range of problem, pertinent physical models were implemented in an

extended finite element method (XFEM) framework written in c++. One of the ma-

jor contribution of this work goes to the battery modeling community, by generalizing

several existing electrochemical-mechanical models which use a small deformation ap-

proximations so they can accommodate finite deformation. A general theory which can

be used to guide the development of new finite element models is presented in detail.

This work also contributes new finite element modeling tools with novel predictive ca-

pabilities to the battery modeling community, which will hopefully facilitate the design

and optimization of next generation battery micro-structures. Studies within demon-

strate that small deformation approximation models can produce incorrect predictions

about the behavior of Li-Si systems, supporting the case for using finite deformation

models. The developed tools are used to demonstrate that arbitrary geometries can

easily be simulated on a the same fixed grid, facilitating automated geometry studies

including parameter sweeping and topology optimization.



www.manaraa.com

iv

Acknowledgements

Thanks to the Department of Aerospace Engineering Sciences, University of Col-

orado, Boulder, for selecting me for a GAANN fellowship and to the U.S. Department

of Education for funding the program. Thanks for the support from the Air Force Office

of Scientific Research MURI; contract/grant number: F9550-06-1-0326. The opinions

and conclusions presented in this thesis are those of the author and do not necessarily

reflect the views of the sponsoring organizations. Thanks to my advisor Professor Kurt

Maute for all his insight, patience, and support. Thanks to all of the past and current

members of the CAS for all of their support and good beer. I like beer. Thanks to Ann

Brookover, the Aerospace Engineering Sciences Graduate Advisor, for all the help with

my transfer into the department and with the GAANN application process, and thanks

to the Graduate committee for making my transfer as smooth as possible. Thanks for

all the support from the faculty and staff in the Mechanical Engineering department

during six of the twelve years I spent studying at CU. Thanks to Dr. Victor Bright

for providing me with the opportunity to join the Graduate Engineering program and

providing support through my first couple years in the program. Thanks to Dr. Bradley

Darren Davidson for all the encouragement and help during my extended stay at the

University of Colorado, Boulder. Thanks to all my family and friends for believing in

me. Thanks to my wonderful girlfriend for all of her love and support through this

strenuous process. Finally, thanks to Dr. Martin L. Dunn, Dr. Carlos Felippa, Dr.

Alireza Doostan, and Dr. Se-Hee Lee for being on my committee.



www.manaraa.com

v

Contents

Chapter

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Document Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Modeling Electrochemical Mechanical Systems 6

2.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Mechanical Equilibrium . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Diffusive Transport . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Electrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Redox Surface Reactions . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Simple Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Simple Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Coupled Elasticity and Diffusion . . . . . . . . . . . . . . . . . . 18

2.2.4 Coupled Elasticity and Diffusion with Swelling . . . . . . . . . . 20

2.3 Physical Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Intercalation Electrode Host Material . . . . . . . . . . . . . . . 28

2.3.2 Electrolyte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3 Surface Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



www.manaraa.com

vi

3 Model Implementation 36

3.1 Finite Element Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Small Deformation Electrode Particle Element . . . . . . . . . . 37

3.1.2 Small Deformation Binary Electrolyte Element . . . . . . . . . . 39

3.1.3 Finite Deformation Electrochemical-Mechanical Element . . . . . 41

3.1.4 Finite Deformation Hydrogel Element . . . . . . . . . . . . . . . 44

3.2 Material Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Small Deformation Electrode Particle Material Model . . . . . . 46

3.2.2 Small Deformation Binary Electrolyte Material Model . . . . . . 46

3.2.3 Hyperelastic Material Model . . . . . . . . . . . . . . . . . . . . 47

3.2.4 Pseudo Finite Deformation Species Transport Material Model . . 51

3.2.5 Pseudo Finite Deformation Ion Transport Material Model . . . . 52

3.2.6 Finite Deformation Species Transport Coupled Material Model . 53

3.2.7 Finite Deformation Ion Transport Coupled Material Model . . . 53

3.2.8 Finite Deformation Hydrogel Material Model . . . . . . . . . . . 54

4 Geometric Considerations 57

4.1 Reduced Order Model Simplifications . . . . . . . . . . . . . . . . . . . . 58

4.2 Extended Finite Element Method . . . . . . . . . . . . . . . . . . . . . . 60

5 Finite Element Model Verification 64

5.1 Small Deformation Models . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.1 Analytical: Static Sphere with Surface Stress . . . . . . . . . . . 64

5.1.2 Analytical: Potentiostatic Insertion into Sphere . . . . . . . . . . 67

5.1.3 Analytical: Galvanostatic Insertion into Sphere . . . . . . . . . . 69

5.1.4 Analytical: Potentiostatic Insertion into Sphere with Surface Stress 71

5.1.5 Finite Element: Galvanostatic Insertion into Sphere (Fully Coupled) 74

5.2 Finite Deformation Models . . . . . . . . . . . . . . . . . . . . . . . . . 75



www.manaraa.com

vii

5.2.1 Analytical: Compressible Non-linear Elastic Materials with Uni-

form Stress Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.2 Analytical: Incompressible Non-linear Elastic Materials with Uni-

form Stress Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.3 Analytical: Incompressible Non-linear Elastic Swollen Materials

with Uniform Stress Fields . . . . . . . . . . . . . . . . . . . . . 88

5.2.4 Analytical: Concentration Induced Swelling of Constrained Body 95

5.2.5 Analytical: Diffusion in Deforming Body . . . . . . . . . . . . . . 96

5.2.6 Finite Difference: Galvanostatic Insertion into Incompressible Sphere

(Fully Coupled) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.7 Finite Element: Hydrogel Problems . . . . . . . . . . . . . . . . 101

5.3 Extended Finite Element Model Verification . . . . . . . . . . . . . . . . 107

5.3.1 Cantilever Beam FEM vs XFEM . . . . . . . . . . . . . . . . . . 107

5.3.2 Si Cylinder in Electrolyte (Half Cell) FEM vs XFEM . . . . . . 110

6 Studies And Discussion 116

6.1 Small Versus Finite Deformation . . . . . . . . . . . . . . . . . . . . . . 116

6.2 State of the Art Modeling Capabilities . . . . . . . . . . . . . . . . . . . 127

7 Future Work And Conclusions 132

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Bibliography 137

8 Appendix 142

8.1 Appendix A: Transformation Rules . . . . . . . . . . . . . . . . . . . . . 142

8.2 Appendix B: Nonlinear Elastic Models . . . . . . . . . . . . . . . . . . . 142



www.manaraa.com

viii

8.3 Appendix C: Chemical Potential Functions . . . . . . . . . . . . . . . . 145

8.4 Appendix D: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146



www.manaraa.com

ix

Tables

Table

2.1 Coupled Elasticity and Diffusion Constitutive Table . . . . . . . . . . . 27

5.1 Particle Material Parameters . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Particle Material Parameters . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Compressible Elastic Material Properties . . . . . . . . . . . . . . . . . . 77

5.4 Compressible Elastic Materials with Uniform Stresses Verification Problems 78

5.5 Element Type Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6 Material Model Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7 Incompressible Elastic Material Properties . . . . . . . . . . . . . . . . . 84

5.8 Incompressible Elastic Material Properties . . . . . . . . . . . . . . . . . 87

5.9 Incompressible Elastic Materials Verification Problems . . . . . . . . . . 88

5.10 Swollen Simple Stretching Simulation Parameters . . . . . . . . . . . . . 95

5.11 Simulation Parameters for Comparison with Zhao . . . . . . . . . . . . . 101

5.12 Simulation Parameters for Comparison with Zhang . . . . . . . . . . . . 107

5.13 Simulation Parameters for Cantilever Beam Study . . . . . . . . . . . . 108

5.14 Simulation Parameters for Li-Si Half Cell Problem . . . . . . . . . . . . 115

6.1 Silicon Material Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Initial & Boundary Conditions (diffusion in stretched sphere) . . . . . . 117

6.3 Initial & Boundary Conditions (pseudo two phase sphere in electrolyte) 119



www.manaraa.com

x

6.4 Initial & Boundary Conditions (pseudo two phase cube in electrolyte

anchored to rod) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.1 Stress Transformation Rules . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.2 Other Transformation Rules . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.3 Material Properties and Constants . . . . . . . . . . . . . . . . . . . . . 146

8.4 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



www.manaraa.com

xi

Figures

Figure

2.1 Cell layout [28] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Decomposition of deformation state. . . . . . . . . . . . . . . . . . . . . 21

4.1 XFEM representations of a circle in a square on different grids. Phase 1

is blue and phase 2 is red. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 1µm sphere in equilibrium with surface stress. (a) displacement profile,

(b) radial stress profile, (c) tangential stress profile. . . . . . . . . . . . . 66

5.2 1µm sphere during potentiostatic insertion without stress induced diffu-

sion. The dots represent the finite element solutions and the lines rep-

resent the analytical solution. (a) normalized concentration profile, (b)

radial stress profile, (c) tangential stress profile. . . . . . . . . . . . . . . 68

5.3 1µm Sphere during galvanostatic insertion without stress induced diffu-

sion. The dots represent the finite element solutions and the lines rep-

resent the analytical solution. (a) normalized concentration profile, (b)

radial stress profile, (c) tangential stress profile. . . . . . . . . . . . . . . 70



www.manaraa.com

xii

5.4 (Sphere-Symmetric) 1µm sphere during potentiostatic insertion with sur-

face stress and without stress induced diffusion. The dots represent the

finite element solutions and the lines represent the analytical solution. (a)

normalized concentration profile, (b) radial stress profile, (c) tangential

stress profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 (Axis-Symmetric) 1µm sphere during potentiostatic insertion with sur-

face stress and without stress induced diffusion. The dots represent the

finite element solutions and the lines represent the analytical solution. (a)

normalized concentration profile, (b) radial stress profile, (c) tangential

stress profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 (Full 3D) 1µm sphere during potentiostatic insertion with surface stress

and without stress induced diffusion. The dots represent the finite ele-

ment solutions and the lines represent the analytical solution. (a) normal-

ized concentration profile, (b) radial stress profile, (c) tangential stress

profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.7 Sphere during galvanostatic insertion . . . . . . . . . . . . . . . . . . . . 74

5.8 Compressible nonlinear structure test schematics. (a) uniaxial deforma-

tion, (b) equi-biaxial deformation, (c) equi-triaxial deformation, (d) shear

deformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.9 (a) Simple Stretching, (b) Equi-Biaxial Stretching. . . . . . . . . . . . . 79

5.10 (Simple stretching) The points marked with asterisks, *, are data points

from finite element simulations, the color lines represent the analytical

stresses calculated with the deformation states from the finite element

simulations, and the black lines represent analytical solutions to the fully

incompressible models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



www.manaraa.com

xiii

5.11 (Equi-biaxial stretching) The points marked with asterisks, *, are data

points from finite element simulations, the color lines represent the an-

alytical stresses calculated with the deformation states from the finite

element simulations, and the black lines represent analytical solutions to

the fully incompressible models. . . . . . . . . . . . . . . . . . . . . . . . 83

5.12 Thick walled sphere with applied internal pressure. . . . . . . . . . . . . 85

5.13 (a) mesh convergence, (b) displacement profile, (c) radial stress profile. . 86

5.14 (a) mesh convergence, (b) displacement profile, (c) radial stress profile. . 86

5.15 (a) mesh convergence, (b) displacement profile, (c) radial stress profile. . 87

5.16 (a) Total strain energy coupled (TSEC) stress, (b) Volumetric strain

energy coupled (VSEC) stress. . . . . . . . . . . . . . . . . . . . . . . . 90

5.17 Chemical potential vs. stretch . . . . . . . . . . . . . . . . . . . . . . . . 92
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Chapter 1

Introduction

1.1 Motivation

In the world markets there is an ever increasing demand for higher capacity bat-

teries. This is due to the proliferation of portable electronic devices, such as cell phones,

laptops, iPods, electric cars, and toys to name a few. In order to facilitate the devel-

opment of higher energy density batteries, the physics involved in charging/discharging

batteries must be well understood. The scientific community has been developing and

using electrochemical models to understand and predict the behavior of battery sys-

tems for decades, but mechanical effects have only been seriously considered in the last

ten years. Linear elasticity has since been employed in numerous studies in efforts to

understand the mechanisms that cause capacity fade and electrode particle fracture.

However, for systems that experience large deformations (e.g. LixSiy systems), linear

elasticity cannot adequately model the mechanics. Instead finite deformation models

must be used. Recently a few finite deformation models have been published for use

in simulating electrode particles [61], dielectrics [49], and full lithium ion half cells [9].

Due to the promise of better battery performance and the increasing sophistication and

availability of micro-fabrication techniques, micro-structured electrodes are receiving an

increasing amount of attention in both numerical studies [20, 19, 57, 56, 55] as well as

experimental studies [10, 46, 35, 37, 53].

In order to characterize and better understand the behavior of micro-structured
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electrodes, highly coupled mechanics-transport models have been developed and im-

plemented in a finite element framework. A small deformation diffusive transport

model coupled with a linear elastic mechanics model with swelling was employed to

study the influence of electrode particle morphology on stress generation during inser-

tion/extraction [22]. The study provided some interesting insight into how electrode

particle sizes can influence the mechanical behavior of battery electrodes during oper-

ation, but the study concluded that more sophisticated tools are needed to facilitate

accurate and efficient studies on optimal electrode particle shapes. It was decided that

the small deformation approximations should not be used because our primary inter-

est was in modeling Li-Si systems which are known to experience significant swelling.

In order to facilitate automated geometry studies such as topology optimization new

finite element models were wrapped into an extended finite element method (XFEM)

framework.

The primary goal of the of this work was to develop more accurate and versatile

modeling tools which can be used by both designers and scientists to efficiently de-

termine optimal electrode designs and develop more intuitive understandings into the

behaviors of batteries and other electrochemical systems during operation. Most previ-

ous modeling work either neglected deformation effects or assumed small deformation

to simplify model development and implementation. Small deformation approximations

are inadequate for our needs, so we chose to generalize previous models to accommo-

date finite deformation effects. However, other complicated mechanical behaviors such

as fracture and plasticity were ignored.

With standard finite element methods (FEM) it is difficult to study varying ge-

ometries because body fitted meshes must be used. Mesh generation usually requires

user input, so geometry studies must be performed manually. In cases when little in

known about geometric effects, attempts to identify optimal geometries can be very

time consuming and often inconclusive as was demonstrated in [22]. To remove the
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requirement for having body fitted meshes it was decided to implement various elec-

trochemical models in an XFEM framework. In our XFEM implementation arbitrary

geometries can be modeled on a fixed grid, removing the need for body fitted meshes

or sophisticated meshing software. With finite deformation electrochemical models im-

plemented in a three dimensional XFEM framework a very powerful tool for modeling

batteries and electrochemical systems has been created.

1.2 Document Organization

Chapter 2 is concerned with developing models to facilitate simulations of electro-

chemical mechanical systems. The phenomena experienced by typical batteries during

operation are discussed, followed by detailed presentations of the mathematical models

used to describe the pertinent physics involved in battery operation. First governing

equations for the various systems of interest are detailed in Section 2.1. Constitutive

relations are described in the following Section 2.2. The chapter is concluded with a

section discussing which governing and constitutive relations should be paired in order

to simulate the various systems of interest.

The following chapter, 3, describes the finite element models that have been im-

plemented. In our implementation a physical model is a pairing of an “element” with a

“material”. “Elements” are responsible for evaluating gauss point state variables, their

spatial gradients, and the derivatives of gauss point state variables and their spatial

gradients with respect to nodal variables. “Elements” are also responsible for integrat-

ing state equations. “Materials” are responsible for evaluating constitutive relations

provided with gauss point state quantities computed by an “element”. Such a modular

setup facilitates the use of various different constitutive relations with the same element

just by switching the “material”. The “elements” described in Section 3.1 are presented

in terms of the quantities they are responsible for computing and the weak forms of

the state equations they are responsible for integrating. The “materials” described in
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Section 3.1 are responsible for evaluating constitutive relations and their derivatives

with respect to nodal state variables.

Chapter 4 is focused on addressing geometric considerations in our model develop-

ment. Geometric assumptions that can be made to reduce the complexity are discussed

in Section 4.1. Then there is a discussion on the methods used for satisfying interface

conditions in our XFEM formulation in Section 5.3. The complete details of our XFEM

implementation are discussed in [36] and will not be discussed within.

After detail discussions of model development and implementation Chapter 5

discusses efforts that have been made to verify the implementations. The first section

(5.1) is concerned with verifying the small deformation formulations. Next a number of

finite deformation model verification studies are presented in Section 5.2. In the final

Section 5.3 XFEM verification studies are presented.

In Chapter 6 the implemented models are employed to investigate the behavior of

Li-Si systems. Section 6.1 compares results generated with the small deformation models

with equivalent results generated with the finite deformation models. The chapter is

concluded with a presentation of novel XFEM simulation results (6.2).

A significant amount of work has been done to develop new modeling capabilities

and help advance the field of electrochemical-mechanical modeling, but a significant

ammount of work remains to be done by future researchers. Chapter 7 is concerned

with wrapping up the document. Section 7.1 focuses on some work that could be done

as a direct extension of the work documented within. Then the discussion portion of

the document ends with a short presentation of some conclusions that can be drawn

from the work completed in Section 7.2.

The appendix is broken up into four sections. The first Section (8.1) lists some

useful transformation rules. The next section (8.2) lists the various non-linear elas-

tic constitutive models that have been implemented in our finite element code. The

following section (8.3) lists the various chemical potential functions that have been im-
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plemented in our finite element code. Finally the last section (8.4) in the paper has

tables defining all symbols used within.
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Chapter 2

Modeling Electrochemical Mechanical Systems

Electrochemistry can be used to describe a wide variety of physical systems

and devices. Everything from corrosion of metals in oxygen rich environments, to

fuel cells can, at least in part, be characterized by electrochemistry. Species diffusion

and mechanics have been studied in many different contexts for decades, but coupled

analyses for electrochemical insertion electrodes has only recently become prevalent

[18, 17, 60, 59, 27, 29, 11, 13, 12, 23, 9, 61]. The development of the models presented

within was motivated by a need to characterize electrochemistry and mechanics involved

in lithium ion battery technologies, most notably silicon lithium systems because of the

significant deformation experienced by silicon during lithium insertion. Typical batter-

ies are composed of five different regions: a positive current collector, a cathode region,

a separator region, an anode region, and a negative current collector. In typical cylin-

drical batteries, e.g. AAs, the five regions are constructed as films then laid together

and rolled up. The construction of the five regions is referred to as a cell. Figure 2.1

depicts a cell.
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Anode Separator Cathode

Li+

Li+

Li+

A

e−

e−

e−

e−

e−

e−

e− e−

Figure 2.1: Cell layout [28]

The positive and negative current collectors are represented by the blue and green

plates on either side of the construction respectively. The current collectors only trans-

port electrons, and can be adequately modeled with boundary conditions at the anode

and cathode current collector interfaces. The electrodes are typically a mix of species

transport material and an electrically conductive binder material impregnated by an

electrolyte material. In the following discussions the combination of the species trans-

port material and the conductive binder material are referred to as electrode particle

material. The separator region is often purely comprised of a single electrolyte material.

The discharge of a cell can be described as follows. The two electrodes are at

different potentials when saturated with the transport species. At the beginning of

the discharge cycle all of the transport species is contained in the Anode at lower

electric potential than the empty Cathode. By making an electrical contact between

the electrodes, electrons are allowed to travel through the external circuit to the cathode.

The removal of electrons from the Anode causes an oxidation reaction to occur at the

anode electrolyte interface, releasing ions into the electrolyte. The ions then diffuse

through the separator to the Cathode electrolyte interface. Similarly to the Anode,

the addition of electrons to the Cathode causes a reduction reaction at the Cathode
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electrolyte interface, creating a neutral species at the interface. The redox reactions

result in concentration gradients of the transport species at the electrolyte interfaces

of the electrodes, which trigger diffusion of the transport species through the electrode

particles. To charge a cell an electric potential is applied across the electrodes reversing

the whole process.

The whole process involves three different types of physical phenomena: species/ion

transport, electrochemical reactions, and mechanical deformation. The transport phe-

nomena include transport of a neutral species through the electrode particles, transport

of ions through the electrolyte, and transport of electrons through the electrode par-

ticles. Both the species and ion transport phenomena are treated as diffusive process

but the potentials that drive them are quite different. It is assumed that the electrons

move much faster than the diffusing species, so electron transport is modeled with elec-

trostatics. To simplify the full model of a cell it is assumed that the only reactions that

occur during discharging are the redox reaction mentioned in the previous paragraph.

Although it is know that other side reactions do occur [41, 4], we neglect them in the

studies presented within. Although mechanics can play a significant role in the behavior

of batteries, it is frequently ignored or greatly simplified by in modeling efforts. Elec-

trode particles are known to swell, some by as much as 300% [10, 4], as they absorb

transport species. It is assumed that the mechanical response to the swelling is much

faster than diffusion, so the various regions of an electrode are assumed to always be in

a state of static equilibrium.

In the following sections models for each of the above physical phenomena are

presented. First governing equations are presented for the different classes of physical

systems in Section 2.1. Then constitutive relations are developed for various different

uncoupled and coupled chemical-mechanical systems in Section 2.2. In the final section

of this chapter (2.3) there is discussion on how to use the governing and constitutive

relations together to model the coupled transport-mechanics phenomena in the electrode
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host and electrolyte regions.

2.1 Governing Equations

The governing equations for the four different physical phenomena of interest

are developed in this section. First the governing equations for mechanical equilibrium

are discussed, because mechanical deformation is an important consideration in the

following sections. Governing equations for diffusive transport are presented in the next

section (2.1.2). Then, the governing equations for electrostatics are presented (2.1.3).

The final subsection (2.1.4) a model for the redox reactions which occur at the electrode-

electrolyte is discussed.

2.1.1 Mechanical Equilibrium

It is assumed that the mechanical response is much faster than species transport.

We can, therefore, neglect inertia and damping, and use a force balance to model the

mechanics. Mechanical equilibrium expressed with Newton’s second law in a continuum

is

∇ · σ = 0 (2.1)

where σ is the true, or cauchy, stress tensor, and ∇ is the gradient operator with respect

to the deformed body. In a three dimensional cartesian coordinate system the gradient

operator is written as

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
(2.2)

î, ĵ, and k̂ are the unit basis vectors in the Cartesian coordinate frame.

Equation (2.1) represents mechanical equilibrium in the current deformed refer-

ence frame. While Equation (2.1) is a nice compact way to represent the force balance

in a continuum, in practice the force balance is usually transformed to the undeformed

reference configuration when finite deformation is a concern. Integrating over the de-
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formed body and applying the divergence theorem

∫

Ω

∇ · σdΩ =

∫

Γ

σ · ndΓ (2.3)

The following integral transformation is used to transform the surface integral in Equa-

tion (2.3) into an integral with respect the undeformed body [8]

ndΓ = JF−Tn0dΓ0 (2.4)

where Γ and n represent the surface and it’s normal in the deformed configuration,

Γ0 and n0 represent the surface and it’s normal in the reference configuration, F is

the deformation gradient, and J is the determinant of F. The deformation gradient is

defined as

F =
∂x

∂X
=

∂xi
∂Xj

= Fij (2.5)

x is the coordinate vector in the deformed frame and X is the coordinate vector in the

undeformed frame. The second equality represents F in index notation but is only valid

for Cartesian coordinate frames where x and X have the following definitions.

x =










x

y

z










X =










X

Y

Z










(2.6)

Applying the surface integral transformation rule (2.4)

∫

Γ

σ · ndΓ =

∫

Γ0

JσF−T · n0dΓ0 =

∫

Γ0

P · n0dΓ0 (2.7)

where P in called the nominal stress tensor. Applying the divergence theorem to get to

a volume integral with respect to the undeformed body

∫

Γ0

P · n0dΓ0 =

∫

Ω0

∇0 ·PdΩ0 (2.8)

the force balance with respect to the undeformed body can be written as

∇0 ·P = 0 (2.9)
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∇0 is the gradient operator with respect to the undeformed body. In a three dimensional

cartesian coordinate system this gradient operator is written as

∇0 = î
∂

∂X
+ ĵ

∂

∂Y
+ k̂

∂

∂Z
(2.10)

Using the above definition of ∇0 and the relation between coordinates in the deformed

and undeformed frames (x = u+X), the deformation gradient can be written as

F =
∂u

∂X
+
∂X

∂X
= ∇0u+ I = H+ I (2.11)

where u is the displacement vector, H is called the displacement gradient, and I is the

second order identity tensor.

In Belytchko’s works the mechanical equilibrium in the reference configuration is

written as

∇0 ·PT
B = 0 (2.12)

where PB is the nominal stress tensor defined by Belytchko as

PB = JF−1
σ (2.13)

but in the works within the nominal stress is defined as

P = JσF−T = JF−1
σ
T = JF−1

σ = PT
B (2.14)

The third equality results from the symmetry in the Cauchy stress tensor. Our formu-

lation is therefore consistent with Belytchko et al. [8]. We adopted the above definition

of the nominal stress tensor because it simplifies some of the following derivation and

it is consistent with other relevant works [33, 58, 34]. In the case of small deformation

all stress measures are nearly equivalent and ∇ ≈ ∇0. Therefore, in the case of small

deformation we can write.

∇ · σ ≈ ∇0 ·P (2.15)

Constitutive relation for stresses will be discussed in Section2.2.
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2.1.2 Diffusive Transport

The governing equations for diffusion are based on conservation of mass. The

mass balance in the deformed volume of an electrode particle is written as

∂c

∂t
+∇ · j = ċ+∇ · j = r (2.16)

c is the true species concentration, j is the true flux, and r is a sink/source term.

Equation (2.16) states that the rate of accumulation of material in a volume must be

balanced by flux of material into the volume. The most general equation for species

flux is

j = cv (2.17)

where v is the velocity of the transport species. In diffusive transport processes the

species velocity is a function of the gradient of chemical potential. Diffusive flux is

expressed with Equation (2.18) [5, 40].

j = − cD

RgT
∇µc = −cM∇µc (2.18)

where M = D
RgT

is the species mobility. Therefore, the species velocity is

v = −M∇µc (2.19)

When considering finite deformation mechanics as well as diffusive transport, it is

advantageous to express concentrations and fluxes in terms of their nominal quantities,

so all of the governing equations can be integrated over the un-deformed frame. The

following expressions relate nominal concentration (C), species flux (J), and gradient

operator (∇0) to the true concentration (c), species flux (j), and gradient operator (∇)

[30].

C = Jc (2.20)

J = JF−1j (2.21)
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∇0 = FT∇ (2.22)

Substituting Equations (2.18), (2.20), and (2.22) into Equation (2.21) we arrive at the

following equation for nominal species flux.

J = − CD

RgT
F−1F−T∇0µc = − CD

RgT
C−1∇0µc = −CM∇0µc (2.23)

where C = FTF is the right Cauchy-Green deformation tensor, and M = C−1 D
RgT

is

the species nominal mobility tensor. The last equality in the expression matches the

form derived by Gurtin et al. [30] in his thermodynamic treatment of species transport

in chapter 66. The governing equations in the reference configuration look identical to

their counterpart in the deformed configuration with the distinct difference that the

concentration and flux are nominal quantities.

∂C

∂t
+∇0 · J = Ċ +∇0 · J = 0 (2.24)

Constitutive relation for chemical potentials will be discussed in Section 2.2.

2.1.3 Electrostatics

It was mentioned above that the electrode particles are partially composed of

an electrically conductive binder, so we can treat the electrode particle material as

an electrical conductor. As a conductor the electrons are highly mobile, so the rate

contribution to the diffusion equations can be neglected. The electron concentration

field is therefore governed by the electrostatic equation.

∇ · i = 0 (2.25)

Where i is the electric field which is a function of the electron concentration gradient

and the conductivity of the material, k.

i = −k∇φ (2.26)
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Mirroring the previous section the governing equation can be expressed in the un-

deformed configuration with a nominal electric field I.

∇0 · I = 0 (2.27)

The nominal electric field is then computed as

I = −kJC−1∇0φ (2.28)

2.1.4 Redox Surface Reactions

The mechanics and all of the transport phenomena are now defined and all that

remains are the redox reactions that occur at the electrode-electrolyte interfaces. The

kinetics associated with the surface reaction and intercalation process can be modeled

with a Butler-Volmer (BV) equation [5]. The BV equation describes an effective Li/Li+

flux and the associated electron/electric potential flux across the interface provided with

an electric potential jump and Li/Li+ concentrations at the interface.

Ibv = I0

[

exp
(
αaF
RgT

(η − U ′ (Cs))
)

− exp
(

αcF
RgT

(U ′ (Cs)− η)
)]

I0 = Fk(Csmax − Cs)
αaCs

αcCl
αa

η = φs − φl

(2.29)

where Ibv is the effective nominal electric potential flux into the interface of the electrode

host, Cs and φs are the nominal concentration of the neutral transport species and

electric potential in the electrode host, Cl and φl are the nominal concentration of the

transport ions and electric potential in the electrolyte, αa and αc are the anodic and

cathodic transfer coefficients respectively, and k is the surface reaction rate constant. It

is not made clear in literature whether true of nominal concentrations should be used

in the Butler-Volmer treatment of the double layer. To minimize extra complication

nominal concentrations are used, but the implementation would only require minor

adjustments to allow true concentrations. Due to conservation of species, we have the
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following coupling conditions at the electrode electrolyte interfaces.

Ibv = Is · ns0 = F (Js · ns0) = −F (Jl · nl0) (2.30)

the terms with a subscript s are relative to the electrode particle and the terms with a

subscript l are relative to the electrolyte. It should be noted that the normals, n0, point

away from their associated bodies, and thus ns0 and nl0 point in opposite directions.

2.2 Constitutive Relations

In the previous section governing equations for various phenomena involved in

battery operation were developed assuming constitutive relations were given. In this

section there is detailed discussion on how constitutive relations are developed for various

systems. We begin by describing uncoupled systems; the degree and complexity of

coupling progresses throughout the section.

2.2.1 Simple Elasticity

Neglecting plasticity and fracture mechanics a general framework for computing

elastic stresses is discussed. First there is a brief discussion of general elasticity, without

swelling, followed by a much more detailed discussion on general elasticity with inter-

calation induced swelling. The variation of the free energy balance for a purely elastic

structure which is subjected to only mechanical constraints and loads can be written as

[33]

P : δF − δW = 0 (2.31)

where W is the total free energy density with respect to the un-deformed body. In this

simple case where all of the free energy stored is due to elastic deformation we can write

W = Ψ where Ψ is the elastic strain energy density. There will not be any discussion

on how elastic strain energy density functions are derived because there are numerous

mechanics resources that delve very deep into the subject including [8, 33, 1, 2]. Instead
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the following discussions assume that elastic strain energy density functions are given; a

framework is developed which makes it relatively easy to swap between existing elastic

strain energy density functions. Using chain rule on the variation of the free energy

density we arrive at
(

P− ∂Ψ

∂F

)

: δF = 0 (2.32)

which brings us to the following constitutive equation for determining the nominal stress

tensor.

P =
∂Ψ

∂F
(2.33)

The various strain energy density functions which have been implemented in our

finite element framework are listed in appendix 8.2. Most strain energy density functions

including all the ones discussed within can be written as

Ψ = Ψiso (F) + Ψvol (J) (2.34)

where Ψvol is the volumetric component which accounts for the energy stored by forced

volume change, and Ψiso is the isochoric component which accounts for energy stored

by the volume preserving portion of deformation. In the above decomposition the

volumetric component only influences the strain energy when there is volume change.

In ideally incompressible materials volume must be preserved so the volumetric

component of the strain energy is identically zero (Ψvol = 0). Incompressible materials

can accommodate infinite pressures without deforming, so the pressure in an incompress-

ible material can not be modeled as a function of the deformation state alone. Therefore,

to account for pressure with an incompressible material model, osmotic pressure must be

considered as an independent state variable defined as the internal pressure required to

preserve volume. For incompressible elastic materials the strain energy density function

can be written as

Ψ = Ψiso (F) + Ψpo (2.35)
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where Ψpo is the internal energy required to preserve volume and is defined with the

following equation.

Ψpo = (J − 1) po (2.36)

The above equation is the result of using a Lagrange multiplier to satisfy the incom-

pressibility condition (J = 1) where po is the Lagrange multiplier. Inserting Equation

(2.36) into Equation (2.35) And differentiating with respect to the deformation gradient,

we arrive at the following equation for the Nominal stress in an incompressible material

[33].

P =
∂Ψiso

∂F
+
∂Ψpo

∂F
=
∂Ψiso

∂F
+ poJF

−T (2.37)

The internal energy required to preserve volume is frequently defined as the negative of

the definition above [33, 8]. The only consequence of using the alternative definition in

Equation (2.37) is the positive osmotic pressure is tensile instead of compressive, which

is consistent with sign convention used with stresses. Since osmotic pressure has been

added as a state variable we must add a new governing equation to control the new

state variable. The new governing equation for controlling osmotic pressure is written

below.

J − 1 = 0 (2.38)

2.2.2 Simple Diffusion

In general diffusion is driven by chemical potential gradients. Constitutive rela-

tions for chemical potentials are derived assuming that a chemical free energy density

function (WC) is provided. In literature WC is almost never provided; instead chemical

potentials are often directly given. There is some discussion on how different assump-

tions about the origins of chemical potentials affect the model. The variation of the free

energy balance for a purely chemical system which is subjected to only concentration
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and flux constraints can be written as [34]

µcδC − δW = 0 (2.39)

In this simple case where all of the free energy stored is due to species transport we

can write W = WC where WC is the chemical free energy density. Using chain rule

on Equation (2.39) we arrive at the following constitutive relation for the chemical

potential.

µc =
∂WC

∂C
(2.40)

A number of different chemical potentials are listed in appendix 8.3 for reference.

2.2.3 Coupled Elasticity and Diffusion

Now that general constitutive relations have been devised for uncoupled elasticity

and diffusion, relations are devised for coupled elasticity and diffusion. Intercalation

induced swelling will continue to be ignored until the next subsection. Summing the free

energy balances in Equations (2.31) and (2.39) we end up with the following variational

free energy balance for coupled elasticity and diffusion.

P : δF + µcδC − δW = 0 (2.41)

The free energy density (W ) of the coupled system is simply the sum of the elastic

strain energy density (Ψ) and the chemical free energy density (WC). Using chain rule

on the variation of the free energy density we arrive at

(

P− ∂Ψ

∂F
− ∂WC

∂J
JF−T

)

: δF +

(

µc −
∂WC

∂C
− ∂Ψ

∂C

)

δC = 0 (2.42)

Therefore, in systems with coupled elasticity and diffusion the nominal stress can be

computed as

P =
∂Ψ

∂F
+
∂WC

∂J
JF−T (2.43)
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and the chemical potential can be computed as

µc =
∂WC

∂C
+
∂Ψ

∂C
(2.44)

The equation for nominal stress (2.43) is identical to equation presented in the

“Simple Elasticity” Section (2.33) with an additional term added to account for a pos-

sible dependence of WC on the volume change characterized determinant of the defor-

mation gradient (J). As chemical free energy density functions are rarely provided we

have found no literature which presents WC as a function of J . However, the chemical

potential which characterizes simple Fickian diffusion is often presented as

µc = µc0 +RgT ln (c) =
∂WC

∂C
(2.45)

where c is the true concentration, Rg is the gas constant and T is the absolute temper-

ature. Using the relation between the true and nominal concentration (c = CJ−1) and

integrating with respect to C we arrive at the following form of W .

WC = C (µc0 +RgT [ln (C)− ln (J)− 1]) (2.46)

Therefore, when modeling Fickian diffusion on a finitely deforming body without swelling

the second term in Equation (2.43) takes on the following form.

∂WC

∂J
JF−T = −CRgTF

−T (2.47)

Inserting Equation (2.47) into Equation (2.43) we arrive at the following constitutive

relation for computing the chemical potential.

P =
∂Ψ

∂F
− CRgTF

−T (2.48)

Because the author has found no literature which discusses this form of coupling the

second term in the stress equation is ignored. In order to minimize errors due to incorrect

assumptions it would be valuable for future researchers to study the impact of including

the additional term.

⇒ P =
∂Ψ

∂F
(2.49)
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The equation for determining the chemical potential (2.44) is identical to equa-

tion presented in the “Simple Diffusion” Section2.40 with an additional term added to

account for a possible dependence of Ψ on the nominal concentration (C). As we are not

considering swelling yet, the deformation is not directly dependent on the concentration.

However, if elastic constants vary with concentration the (∂Ψ∂C ) term will be non-zero.

When modeling a nearly incompressible material, any explicit dependence on J

is removed with the following identity

J = 1 (2.50)

and Ψvol is replaced by Ψpo as described in Section 2.2.1, leading us to the following

free energy balance.

(

P− ∂Ψiso

∂F
− p0JF

−T

)

: δF +

(

µc −
∂WC

∂C
− ∂Ψiso

∂C

)

δC + (1− J) δp0 = 0 (2.51)

Therefore, we arrive at the following equations for determining the nominal stress tensor

(P) and chemical potential (µ).

P =
∂Ψ

∂F
+ p0JF

−T (2.52)

µc =
∂WC

∂C
+
∂Ψ

∂C
(2.53)

As in Section 2.2.1 po is added as a state variable governed by Equation (2.38).

2.2.4 Coupled Elasticity and Diffusion with Swelling

Building off of the discussion in Section 2.2.3 we now consider swelling in our

coupled transport models. It is assumed that the deformation state can be decom-

posed into two sequential deformations: a concentration induced swelling and a elastic

deformation. The figure below illustrates the deformation decomposition.
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Figure 2.2: Decomposition of deformation state.

Decomposing the deformation in this way is equivalent to representing the defor-

mation gradient as

F = FeFC (2.54)

where FC is the concentration induced swelling and Fe is the elastic deformation that

follows. Because the swelling is a result of adding molecules to the electrode particle

material, we assume that the volume increase is proportional to the number of moles of

species absorbed multiplied by the volume of a mole of the absorbed species. Written

mathematically

V

V0
= det

(
FC

)
= 1 + ΩC = JC (2.55)

Anisotropic swelling in a cartesian coordinate frame can be modeled by using a defor-

mation gradient of the following form.

FC =










fcx 0 0

0 fcy 0

0 0 fcz










(1 + ΩC)1/3 = fC(1 + ΩC)1/3 (2.56)

where det
(
fC

)
= 1. Assuming that the volume expansion is isotropic the swelling

contribution to the deformation gradient can be expressed as

FC = (1 + ΩC)1/3δ (2.57)
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Zhao et al. [61] and Bower et al. [9] use similar decompositions in their treatments

of mechanical equilibrium in silicon electrode particles during lithiation. Zhao decom-

posed the deformation into a stress free inelastic deformation followed by an elastic

deformation. Zhao’s inelastic deformation is analogous to our concentration induced

swelling part, but in Zhao’s decomposition the inelastic deformation is composed of a

species induced swelling and a plastic deformation. We don’t model plastic deformation.

Multiplicative decompositions are commonly assumed in intercalation induced swelling

models [15, 16].

In swelling intercalation electrode models it is assumed that the intercalation

induced swelling (FC) is stress free and all of the strain energy stored in the system

is attributed to the deformation relative to the stress free swollen body (Fe) [18, 17,

60, 59, 11, 11, 27, 29, 61, 9, 22]. Models based on this assumption will be referred

to as total strain energy coupled (TSEC) because the total strain energy is dependent

only on the elastic deformation. With the TSEC assumption any of the strain energy

densities listed in appendix 8.2 can be used to characterize the strain energy density

with respect to the stress-free swollen body (Ψe). The Neo-Hookean model taken from

[2] (8.7) adapted for the TSEC formulation is written as

Ψe =
µ0
2

(
Īe1 − 3

)
+
κ0
2
(Je − 1)2 (2.58)

where Īe1 = trace
(
C̄e

)
is the first invariant of the isochoric elastic right Cauchy green

deformation tensor defined as

C̄e = (Je)−2/3Ce = (Je)−2/3FeTFe (2.59)

Ψe characterizes the strain energy density with respect to the stress free swollen

body, so the strain energy density with respect to the undeformed body is

Ψ = JCΨe (2.60)
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Inserting Equation (2.60) into the free energy balance (2.41) and applying chain rule

we arrive at the following free energy balance for our TSEC model.

(

P− JC ∂Ψ
e

∂Fe
:
∂Fe

∂F

)

: δF+

(

µc −
∂WC

∂C
− ∂JC

∂C
Ψe − JC ∂Ψ

e

∂Fe
:
∂Fe

∂C

)

δC = 0 (2.61)

Then nominal stress tensor (P) and chemical potential (µ) are computed with the

following relations.

P = JC ∂Ψ
e

∂Fe
:
∂Fe

∂F
(2.62)

µc =
∂WC

∂C
+
∂JC

∂C
Ψe + JC ∂Ψ

e

∂Fe
:
∂Fe

∂C
(2.63)

Solving Equation (2.54) for Fe and taking the derivatives with respect to F and C we

find

∂Fe

∂F
= F−C ∂F

∂F
= F−CI (2.64)

∂Fe

∂C
=
∂F−C

∂C
F = −Ω

3

(
JC

)−4/3
F (2.65)

where I is the fourth order identity tensor. Using Equations (2.64) and (2.57) the

equation for determining the nominal stress simplifies to

P =
(
JC

)2/3 ∂Ψe

∂Fe
(2.66)

Using Equations (2.65) and (2.55) the equation for determining the chemical potential

simplifies to

µc =
∂WC

∂C
+ΩΨe − Ω

3

(
JC

)−1/3 ∂Ψe

∂Fe
: F =

∂WC

∂C
+Ω

(

Ψe − J−CP : F

3

)

(2.67)

The last term can be further simplified as shown below.

J−CP : F

3
= J−C trace

(
PFT

)

3
= J−CJ

trace
(
J−1PFT

)

3
= Je trace (σ)

3
= Jeσh

(2.68)

σh is called the hydrostatic stress. The chemical potential equation can now be expressed

as

µc =
∂WC

∂C
+Ω(Ψe − Jeσh) (2.69)
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Equation (2.69) is nearly equivalent to a chemical potential equation presented in Bower

et al. [9], but the mechanical constitutive model is presented in more general terms. It

should be noted that Bower derives some very similar formulations, but uses thin film

approximations and assumes uniform concentration through the thickness of the elec-

trode circumventing all of the complexities associated with modeling coupled transport

in the electrode. Neglecting the (ΩΨe) term and assuming the elastic deformation is

volume preserving, i.e. incompressible, we arrive at Zhao’s formula for computing the

chemical potential [61].

µc =
∂WC

∂C
− Ωσh (2.70)

Despite the fact that the author has found no published works which present a

chemical free energy density that is dependent on the determinant of the deformation

gradient, such a dependency is implied in Zhao et. al. 2011 [61]. In this paper Zhao

presents the following chemical potential

µc = µc0 +RgT ln (c)− Ωσh (2.71)

It has been somewhat difficult to follow Zhao’s for lack of detail, but he appears to

assume that the material is nearly incompressible in which case any volume change is

purely due to intercalation induced swelling (J = JC). Zhao replaces c with CJ−1 and

then uses (J = 1+ΩC) in his chemical potential to remove any explicit dependence on J .

Zhao ends up using the following equation to define the chemical potential. Although

the chemical potential used by Zhao doesn’t have an explicit dependence on J , the

formulas presented in his paper imply such a dependence is possible.

µc = µc0 +RgT ln

(
C

1 + ΩC

)

− Ωσh (2.72)

When modeling a nearly incompressible material, any explicit dependence on J

is removed with the following identity

J = 1 + ΩC (2.73)
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and Ψe,vol is replaced by

Ψpo = (J − 1− ΩC) po (2.74)

where Ψpo results from using a Lagrange multiplier to satisfy the incompressibility

condition (2.73). Then the free energy balance takes on the following form.

(

µc − ∂WC

∂C − ΩΨe,iso + Ω
3

(
JC

)−1/3 ∂Ψe,iso

∂Fe : F+Ωp0

)

δC+

(1 + ΩC − J) δpo +
(

P−
(
JC

)2/3 ∂Ψe,iso

∂Fe − JpoF
−T

)

: δF = 0

(2.75)

Using the definition

(
JC

)2/3

3

∂Ψe,iso

∂Fe
: F =

trace
(
PisoFT

)

3
= J

trace
(
σiso

)

3
= JCσhiso (2.76)

we arrive at the following equations for determining the nominal stress tensor (P) and

chemical potential (µc).

P =
(
JC

)2/3∂Ψe,iso

∂Fe
+ JpoF

−T = Piso + JCpoF
−T (2.77)

µc =
∂WC

∂C
+ΩΨe,iso − Ωσhiso − Ωp0 =

∂WC

∂C
+Ω

(
Ψe,iso − σh

)
(2.78)

Osmotic pressure is added as a state variable with the addition of the following governing

equation.

J − 1− ΩC = 0 (2.79)

When modeling hydrogels a different form of coupling is assumed. In intercalation

electrodes is assumed that the portion of the deformation described by FC is stress free,

however researchers assert that in hydrogels this is not the case because polymer chains

don’t swell and are assumed to undergo strain during swelling. It is assumed that the

Ψiso is a function of the total deformation and Ψvol is only a function of the portion of

the deformation described by F e [15, 16]. Chester and Anand rename Ψiso the strain

entropy (Ψη) stating that it is the energy stored by straining lattice chains, while Ψvol

is renamed internal strain energy (Ψε) stating that it is the energy stored by forced

volume change. Models which use this form of strain energy coupling will be referred to
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as volumetric strain energy coupled (VSEC) because only the volumetric strain energy

is dependent on the elastic deformation alone. With the VSEC assumption any of the

strain energy densities listed in Appendix 8.2 can be used to characterize the VSEC

strain energy density by replacing J in Ψvol by Je. For example the Neo-Hookean

model taken from [2] is written as

Ψ =
µ0
2

(
Ī1 − 3

)
+
κ0
2
(Je − 1)2 (2.80)

Ī1 is the first invariant, a.k.a. the trace, of the purely isochoric component of the Right

Cauchy Green Deformation tensor defined below

Ī1 = trace (C)J−2/3 = (C : I) J−2/3 (2.81)

Applying the chain rule to Equation (2.41) we arrive at the following free energy

balance for the VSEC model.

(

P− ∂Ψη

∂F
− ∂Ψε

∂Je
JeF−T

)

: δF +

(

µc −
∂WC

∂C
+ΩJ−C ∂Ψ

ε

∂Je
Je

)

δC = 0 (2.82)

Then the nominal stress tensor (P) and chemical potential (µ) are computed with the

following relations.

P =
∂Ψη

∂F
+
∂Ψε

∂Je
JeF−T (2.83)

µc =
∂WC

∂C
− ΩJ−C ∂Ψ

ε

∂Je
Je =

∂WC

∂C
− ΩJeσε (2.84)

σε is called internal energy stress.

The VSEC model is adapted for incompressibility in a similar manner as the

TSEC model. Any explicit dependence on J is removed by applying Equation (2.73)

and Ψε is replaced by Ψpo in Equation (2.74). The free energy balance takes on the

following form.

(

P− ∂Ψη

∂F
− JpoF

−T

)

: δF+

(

µc −
∂WC

∂C
+Ωpo

)

δC + (1 + ΩC − J) δpo = 0 (2.85)
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Therefore, the nominal stress tensor (P) and chemical potential (µ) are computed with

the following relations.

P =
∂Ψη

∂F
+ JpoF

−T (2.86)

µc =
∂WC

∂C
− Ωpo (2.87)

Osmotic pressure is added as a state variable with the addition of the governing Equation

(2.79). Equations (2.86) and (2.87) are identical to the constitutive relations used by

Hong et al. [34] for modeling incompressible hydrogels. A table summarizing all of the

constitutive relations for coupled elasticity and diffusion models is shown belowS.

Table 2.1: Coupled Elasticity and Diffusion Constitutive Table

P µc

NoSwell ∂Ψ
∂F

∂WC

∂C

NoSwellI ∂Ψiso

∂F + p0JF
−T ∂WC

∂C

TSEC
(
JC

)2/3 ∂Ψe

∂Fe
∂WC

∂C − Ωσh

TSECI
(
JC

)2/3 ∂Ψe,iso

∂Fe + JCpoF
−T ∂WC

∂C − Ωσh

VSEC ∂Ψη

∂F + ∂Ψε

∂Je J
eF−T ∂WC

∂C − ΩJeσε

VSECI ∂Ψη

∂F + JpoF
−T ∂WC

∂C − Ωpo

2.3 Physical Interpretation

With governing equations and constitutive relations developed in general terms

we next discuss how to apply mathematical models to physical systems of interest. In a

simple cell there are two very different bulk regions which we are interested in explicitly

modeling; intercalation electrode host material and electrolyte. In both regions there

is diffusive transport, but in the electrode host material the transporting molecules are

electrically neutral where in the electrolyte the transporting molecules are ions. Also,

the electrode host material tends to swell as molecules are absorbed, while this behavior
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has not been documented in studies of battery electrolytes.

2.3.1 Intercalation Electrode Host Material

Intercalation electrode host materials typically swell as they absorb the transport

species. It is assumed that the mechanical response is much faster than species trans-

port, so the electrode is always in a state of static mechanical equilibrium described in

Section 2.1.1. Assuming that the species transport is purely diffusive we use the equa-

tions discussed in Section 2.1.2 as the transport governing equations. The complete

set of governing equations and constitutive relations used to represent coupled species

diffusion-deformation in intercalation electrode host materials are listed below.

∇0 ·P = 0 (2.88)

Ċ +∇ · J = 0 (2.89)

where J = −CM∇0µc.

In silicon electrodes neutral lithium causes significant swelling as it is diffusively

transported through the electrode. In the electrode modeling community it is usually

assumed that the deformation experienced by the host material can be decomposed into

a stress free purely inelastic deformation and a purely elastic deformation [18, 17, 60, 59,

11, 11, 27, 29, 61, 9, 22]. In [61] and [9] the inelastic deformation is further decomposed

into plastic and species induced swelling deformations, but in most works including

those documented within plastic deformation is neglected leaving the decomposition

represented by Equation (2.54). Therefore, the TSEC constitutive relations developed

in Section 2.2.4 are used do determine the nominal stress tensor and (P) the chemical

potential (µc) respectively.

P =
(
JC

)2/3 ∂Ψe

∂Fe
(2.90)

µc =
∂WC

∂C
+Ω(Ψe − Jeσh) (2.91)
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The governing and constitutive relations listed above were developed with large

deformation in mind. Using small deformation approximations the governing equations

can be written as

∇ · σ = 0 (2.92)

ċ+∇ · j = 0 (2.93)

where j = −cM∇µc. The constitutive relations can be written as

σ = C : εe = C : (ε− ε
c) (2.94)

where ε = 1
2

[

∇u+ (∇u)T
]

is the total linear strain tensor and εc = Ω
3 c is the linear

intercalation induced swelling strain tensor.

µc =
∂W c

∂c
− Ωσh (2.95)

The above small deformation approximation equations are identical to the ones used in

[60, 59, 27, 29, 22] for modeling coupled species diffusion-mechanics in electrode host

materials.

2.3.2 Electrolyte

The discussion within is restricted to binary electrolytes. In a binary electrolyte

there are only two types of ions; cations which are positively charged and anions which

are negatively charged. The ions are assumed to be diffusively transported, so the

mass conservation equations discussed in Section 2.1.2 are chosen as the ion transport

governing equations. In choosing a diffusive transport model we are neglecting the

possibility of fluid like electrolyte flow. We are, however, not very concerned with the

electrolyte flow effects and are interested in modeling solid electrolytes and electrolyte

pastes. It is, therefore, reasonable to model the electrolyte as a solid governed by the

equations discussed in Section2.1.1. In binary electrolytes like the negative ions, the
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positive ions may also be mobile in the electrolyte, but in the modeling community they

are never both explicitly modeled.

In practice the electro-neutrality assumption is used to simplify the binary elec-

trolyte model [40, 20, 57, 19, 55, 56]. The electro-neutrality condition can be expressed

mathematically as

C+ = C− = C (2.96)

where C+ and C− are the nominal cation and anion concentrations respectively, and C

will be referred to as the nominal ion concentration. The consequences on the electro-

neutrality assumption are we have two different mass balances governing the same state

variable. Written with respect to the un-deformed electrolyte

∂C

∂t
+∇0 · J+ = 0 = RC+ (2.97)

∂C

∂t
+∇0 · J− = 0 = RC− (2.98)

where

J+ = −CD+

RgT
∇0µ+ = −CM+∇0µ+ (2.99)

J− = −CD−

RgT
∇0µ− = −CM−∇0µ− (2.100)

µ+ and µ− are the electrochemical potentials that drives cation diffusion and anion

diffusion respectively. Ion diffusion in electrolytes is typically assumed to be driven by

electrochemical potentials of the following form [40, 20, 19, 55].

µci = µci0 +RgT log (ci) + ziFφ = µci0 + µciF + µφ (2.101)

where ci is the concentration of the ion i, µci0 is the initial electrochemical potential

ion i, µciF is the portion of electrochemical potential which results in Fickian diffusion

ion i, φ is the electric potential, and µφ is the electric potential contribution to the

electrochemical potential. The subscript “i” represents the ith ion in an electrolyte with

N different types of ions. In the binary electrolyte i ∈ {+,−}. c+ and c− are the true
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cation and anion concentrations respectively, and z+ and z− are the cation and anion

valence numbers respectively. In binary electrolytes z+ = −z− = z where we will refer

to z as the ion valence number.

The first two terms in Equation (2.101) result in Fickian diffusion, and the third

term accounts for ion migration. Ion migration can be described as the diffusion of

ions driven by electric forces. Equation (2.101) is expressed as a function of the true

concentrations, but in our finite deformation models depend on nominal concentrations.

ci is replaced by Ci

J resulting in the following chemical potential equation.

µci = µci0 +RgT [ln (C)− ln (J)] + ziFφ (2.102)

Inserting the electrochemical potential (2.102) into the nominal flux Equations (2.99)

and (2.100) we arrive at

J+ = −CM+

[
∇0µcF + zF∇0φ

]
(2.103)

J− = −CM−

[
∇0µcF − zF∇0φ

]
(2.104)

Combining the cation and anion governing equations in the following way we arrive at

the new governing equation for the ion concentration.

D−RC++D+RC−

D++D−

= ∇0
(

D−

D++D−

)

· J+ +∇0
(

D+

D++D−

)

· J−

+∂C
∂t −∇0 ·

[
MPC∇0µcF

]
(2.105)

Where Mp = D+D−

D++D−

C−1

RgT
=

Dp

RgT
C−1. Assuming the diffusion coefficients are constant

the terms involving gradient of diffusion coefficients vanish resulting in the following

governing equation for binary electro neutral electrolyte ion transport.

∂C

∂t
+∇0 ·

[
−MpC∇0µcF

]
=
∂C

∂t
+∇0 · Jp = 0 (2.106)

Jp is called the nominal pseudo ion flux. The pseudo designation is used because

Jp is not actually the flux experienced by the ions, it is an algebraic combination of

cation and anion flux Equations (2.103) and (2.104). Combining the cation and anion
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governing equations in a different way we arrive at the following governing equation for

the electrolyte electric potential.

D−RC+ +D+RC− = ∇0 · IP = 0

IP = F CC−1

RgT

[
− (D+ −D−)∇0µcF − (D+ +D−) zF∇0φ

]
(2.107)

Ip is called the pseudo nominal electric field.

The complete set of governing equations used in modeling deformation, ion trans-

port, and electric potential are listed below.

∇0 ·P = 0 (2.108)

Ċ +∇0 · Jp = 0 (2.109)

∇0 · IP = 0 (2.110)

The constitutive relations are listed next.

P =
∂Ψ

∂F
(2.111)

Ψ can be any of the strain energy density functions listed in appendix 8.2.

Jp = −MpC∇0µcF =
D−J+ +D+J−

D+ +D−

(2.112)

Any of the chemical potentials listed in appendix 8.3 can be used in the place of µcF .

IP =
FCC−1

RgT

[
− (D+ −D−)∇0µcF − (D+ +D−) zF∇0φ

]
= F (J+ − J−) (2.113)

The final assumption made for the binary electro-neutral electrolyte is only the

cations can be extracted from and inserted into the electrolyte through an interface.

Written mathematically as

J− · n0 = 0 (2.114)

where n0 the unit surface outward normal with respect to the undeformed electrolyte

interface. Therefore, the interface nominal pseudo ion flux and the interface nominal

pseudo electric flux must satisfy the following conditions.

Jp · n0 =
D−

D+ +D−

J+ · n0 (2.115)
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Ip · n0 = FJ+ · n0 (2.116)

Because batteries are driven electrically the interface electric flux condition (2.116)

is used to externally drive ion transport, and the interface nominal pseudo ion flux

condition is satisfied just inside the interface with the following equation.

Jp · n0 =
D−

F (D+ +D−)
Ip · n0 (2.117)

The governing and constitutive relations listed above were developed with large

deformation in mind. Using small deformation approximations the governing equations

can be written as

∇ · σ = 0 (2.118)

ċ+∇ · jp = 0 (2.119)

∇ · iP = 0 (2.120)

and the constitutive relations can be represented with the following equations.

σ = C : ε = C :

(
1

2

[

∇u+ (∇u)T
])

(2.121)

jp = −Dpc

RgT
∇µcF (2.122)

iP =
Fc

RgT
[− (D+ −D−)∇µcF − (D+ +D−) zF∇φ] (2.123)

The above small deformation approximation equations are identical to the ones used

in [20, 19, 55] for modeling ion transport through electrolytes, except that mechanics

was completely ignored. It’s worth noting that although much of the models presented

within can be viewed as finite deformation extensions of those used by Dr. Stephanie

Golmon, the electrolyte transport model is somewhat different from one used by Dr.

Golmon. The model used in [27] can be written as

iP = −κ
[

∇φ− RgT

F

(
1− t0+

)
∇ (ln c)

]

(2.124)
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The differences in ours versus Golmon’s the models can be attributed to their origins.

Our models are based on dilute solution theory which is evident from the lack of interac-

tion terms in the electrochemical potentials of the positive and negative ions. Golmon’s

model, on the other hand, is based on the concentrated solution theory presented in the

PhD thesis of Dr. Doyle [24]. One of the major goals of the works within was to build

upon existing models electrochemical models and develop a complete set of microscale

models which can be used to model finite deformation mechanics and transport in a

battery cell. A complete set of models have been developed and implemented in a finite

element framework, but the job of determining if dilute solution theory assumptions are

completely appropriate for their intended use remains for future researchers.

2.3.3 Surface Elasticity

DeLuca et al. [22] demonstrated that stress states during swelling, in silicon

electrode particles in the <100nm range, are completely dominated by surface stress

effects. As we are interested in modeling particles in this range a surface stress model

is developed. In general, structures with macro-scale characteristic lengths are mostly

unaffected by the influence of surface stress, but when characteristic lengths are in

the micro-scale, the surface stress can dominate the stress state [38, 45, 50]. A gen-

eral expression for surface stress was originally developed by Gurtin et al. [31]. The

equilibrium equation on the surface is written as

σ · n−∇Γ · τ = 0 (2.125)

where τ is the surface stress tensor. The surface elasticity equations were formulated

for and studied with the linear strain models; some modifications should probably be

made if implementing the models in a finite strain context. The surface stress tensor is

a function of the surface stretch , εΓ, and the surface mechanical properties.

ε
Γ =

1

2

(
∇Γu+∇ΓuT

)
(2.126)
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∇Γ is the surface differential operator, which was defined by Gurtin et al. [31]. The

surface constitutive relation has been expressed in many different ways; we use one of

the most generic forms [38, 45, 42, 43, 22].

τ = τ 0 +Ks : εΓ (2.127)

In Equation (2.127) τ 0 is the initial surface stress and Ks is the surface elastic constitu-

tive tensor. In our implementations the 4th order tensors are flattened out into matrices

and the second order tensors are flattened out into vectors. The surface stress equation

is represented as

τ̄ = τ̄ 0 + K̄s
ε̄
Γ =






τ11

τ22




 =






τ011

τ022




+






Ks
11 Ks

12

Ks
12 Ks

22











ε11

ε22




 (2.128)

Surface elastic properties for Si can be found in Miller and Shenoy 2000 [38].
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Model Implementation

Pertinent physical systems have been characterized with mathematical models.

In order to facilitate using the models to study interesting problems the models are

implemented in a finite element framework. The finite element framework consists of a

time solver for marching the system through time, a non-linear solver for computing the

solution at each time step, a linear solver for computing the step towards the solution on

each iteration of the non-linear solve, and an element assembly routine for assembling the

elemental residuals and jacobians them into the global residual and jacobian to facilitate

the linear solve step. In the framework there are a number of choices for time solvers,

non-linear solvers, and linear solvers. In most of the studies presented within a first

order accurate backward difference formula time solver, a standard Newton non-linear

solver, and a direct linear solver are used.

In the finite element framework the elements are responsible for integrating the

governing equations, while the material models are responsible for the constitutive equa-

tions. This is accomplished by building routines for computing necessary state variables

and their gradients into the elements. The state variables and their gradients are com-

puted by the elements and then are passed to the materials where they are used with the

constitutive relations to compute derived values, such as P and J, and their derivatives

with respect to the state variables. The derived values and their derivatives are then

passed back to the element where they are used with the governing equations to compute
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elemental residual and jacobian contributions. With this framework an element can be

adapted to simulate many different physical systems simply by using different material

models. The nodally discretized state variable are referred to as Degrees of Freedom

(DOFs) within and are denoted with the symbol that has been used to represent the

corresponding state variable but with a ∼ hat.

3.1 Finite Element Types

The different element formulations that have been implemented are presented in

the context of the weak form of their governing equations. The elements handle the

nodal DOFs in a vector form. In each element nodal DOF residuals are computed and

returned as vector and the derivatives of the residual vector with respect to the 0th, 1st,

and 2nd derivatives of the nodal DOFs with respect to time are computed and returned

as matrices. The assembly routine, knowing how the 0th, 1st, and 2nd time derivatives

of the nodal DOFs were computed, assembles the total jacobian from the components

accordingly.

3.1.1 Small Deformation Electrode Particle Element

This element implementation is based on the small deformation formulation dis-

cussed in Section 2.3.1, and designed for simulating intercalation electrode materials.

It operates on displacement (ũ), species concentration (c̃), electric potential (φ̃), and

hydrostatic stress (σ̃h) DOFs. The ũ DOFs are interpolated quadratically, the c̃ and

φ̃ DOFs can be interpolated quadratically or linearly, and the σ̃h DOFs are interpo-

lated linearly. At each integration point the element can directly compute the following

quantities.

Var u c ċ φ σh ε εΓ ∇c ∇φ ∇σh
∂(Var)
∂∗̃

∂u
∂ũ

∂c
∂c̃

∂ċ
∂̃̇c

∂φ

∂φ̃

∂σh

∂σ̃h

∂ε
∂ũ

∂εΓ
∂ũ

∂(∇c)
∂c̃

∂(∇φ)

∂φ̃

∂(∇σh)
∂σ̃h

(3.1)
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All of the above variables are defined in the small deformation approximation discussions

in Chapter 2.

D−RC+ +D+RC− = ∇0 · IP = 0

IP = F CC−1

RgT

[
− (D+ −D−)∇0µcF − (D+ +D−) zF∇0φ

]

The mechanics governing equation is expressed in the weak form below.

δWu = −
∫

Ω

δε : σ dΩ−
∫

Γ

δεΓ: τ dΓ +

∫

Γ

δu · (σ · n) dΓ = 0 (3.2)

c, ε, and their DOF derivatives are passed to the material model where they are used

to compute σ, ∂σ
∂ũ , and ∂σ

∂c̃ . The element uses the stress tensor (σ) and it’s derivatives

to compute the resudial and jacobian contributions represented by the first term in

Equation (3.2). The second term in Equation (3.2) is treated in a similar way, but it

is only integrated on surfaces. If provided a traction vector or surface pressure, they

are integrated over the surface as represented by the third term in Equation (3.2). To

integrate a surface traction vector the (σ · n) term is replaced by the provided vector,

and to integrate a surface pressure the (σ · n) term is replaced by the provided pressure

times the normal vector.

The species diffusion governing equation is written in the weak form below.

δWc =

∫

Ω

(δcċ − δ∇c · j) dΩ+

∫

Γ

δc j · n dΓ = 0 (3.3)

The first term in the first integral in Equation (3.3) is integrated directly without any

assistance from the material model. c, ∇c, ∇σh, and their DOF derivatives are passed to

the material model where they are used to compute j, ∂j
∂c̃ , and

∂j
∂σ̃h

. The element uses the

flux vector (j) and it’s derivatives to compute the resudial and jacobian contributions

represented by the second term in the first integral in the species diffusion governing

Equations (3.3). The second integral in Equation (3.3) represents the surface species

flux. If a surface flux is provided it is integrated by replacing (j · n) with the provided
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flux. Surface flux can also be computed with the BV equations by providing the material

model with concentrations and voltages on both sides of the interface.

The electric potential governing equation written in the weak form is

δWφ = −
∫

Ω

δ∇φ · i dΩ+

∫

Γ

δφ i · n dΓ = 0 (3.4)

∇φ and it’s DOF derivatives are passed to the material model where they are used to

compute i and ∂i
∂φ̃

. The element uses the electric field vector (i) and it’s derivatives

to compute the resudial and jacobian contributions represented by the first integral in

the electric potential governing Equation (3.4). The second integral in Equation (3.4)

represents the surface electric flux. If a surface flux is provided it is integrated by

replacing (i ·n) with the provided flux. Surface electric flux can also be computed with

the BV equations.

This element is set up to allow stress assisted diffusion models. In stress as-

sisted diffusion flux can be driven by pressure gradients, but since pressure is already a

function of the displacement gradients spacial second derivatives would be required to

directly compute the pressure gradients. To simplify the pressure gradient computation

a hydrostatic stress state variable was introduced with the following governing equation.

δWσh
=

∫

Ω

δσh

(

σh −
tr(σ)

3

)

dΩ = 0 (3.5)

σh and it’s DOF derivatives can be directly used to compute the residual and jacobian

contributions represented by the first term in (3.5). The stress tensor (σ) and it’s DOF

derivatives already computed for the mechanics governing equation are used to integrate

the residual and jacobian contributions represented by the second term in (3.5.

3.1.2 Small Deformation Binary Electrolyte Element

This element implementation is based on the small deformation formulation dis-

cussed in Section2.3.2, and designed for simulating non-flowing electrolytes. It oper-

ates on displacement (ũ), ion concentration (c̃), and electric potential (φ̃) DOFs. The
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ũ DOFs are interpolated quadratically, and the c̃ and φ̃ DOFs can be interpolated

quadratically or linearly. At each integration point the element can directly compute

the following quantities.

Var u c ċ φ ε ∇c ∇φ
∂(Var)
∂∗̃

∂u
∂ũ

∂c
∂c̃

∂ċ
∂̃̇c

∂φ

∂φ̃
∂ε
∂ũ

∂(∇c)
∂c̃

∂(∇φ)

∂φ̃

(3.6)

All of the above variables are defined in the small deformation approximation discussions

in chapter 2.

The mechanics governing equation is expressed in the weak form below.

δWu = −
∫

Ω

δε : σ dΩ+

∫

Γ

δu · (σ · n) dΓ = 0 (3.7)

ε and it’s DOF derivatives are passed to the material model where they are used to

compute σ and ∂σ
∂ũ . The element uses the stress tensor (σ) and it’s derivatives to

compute the resudial and jacobian contributions represented by the first integral in

Equation (3.7). If provided a traction vector or surface pressure, they are integrated

over the surface as represented by the second term in Equation (3.2). To integrate

a surface traction vector the (σ · n) term is replaced by the provided vector, and to

integrate a surface pressure the (σ · n) term is replaced by the provided pressure times

the normal vector.

The ion diffusion governing equation is written in the weak form below.

δWc =

∫

Ω

(δcċ − δ∇c · j) dΩ+

∫

Γ

δc j · n dΓ = 0 (3.8)

The first term in the first integral in Equation (3.8) is integrated directly without any

assistance from the material model. ∇c and it’s DOF derivatives are passed to the

material model where they are used to compute j, and ∂j
∂c̃ . The element uses the flux

vector (j) and it’s derivatives to compute the resudial and jacobian contributions repre-

sented by the second term in the first integral in the ion diffusion governing Equations

(3.8). The second integral in Equation (3.8) represents the surface ion flux. If a surface
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flux is provided it is integrated by replacing (j · n) with the provided flux. Surface flux

can also be computed with the BV equations by providing the material model with

concentrations and voltages on both sides of the interface.

The electric potential governing equation written in the weak form is

δWφ = −
∫

Ω

δ∇φ · i dΩ+

∫

Γ

δφ i · n dΓ = 0 (3.9)

c, ∇c, ∇φ and their DOF derivatives are passed to the material model where they

are used to compute i, ∂i
∂φ̃

, and ∂i
∂c̃ . The element uses the electric field vector (i) and

it’s derivatives to compute the resudial and jacobian contributions represented by the

first integral in the electric potential governing Equation (3.9). The second integral in

Equation (3.9) represents the surface electric flux. If a surface flux is provided it is

integrated by replacing (i · n) with the provided flux. Surface electric flux can also be

computed with the BV equations.

3.1.3 Finite Deformation Electrochemical-Mechanical Element

This element implementation is based on the finite deformation formulations, and

designed for simulating coupled transport-mechanics in intercalation host materials and

non-flowing electrolytes. It operates on displacement (ũ), nominal species concentration

(C̃), electric potential (φ̃), and hydrostatic stress (σ̃h) DOFs. The ũ DOFs are inter-

polated quadratically, the C̃ and φ̃ DOFs can be interpolated quadratically or linearly,

and the σ̃h DOFs are interpolated linearly. The element also optionally uses linearly

interpolated osmotic pressure (p̃o) DOFs if an incompressibility flag is set. At each

integration point the element can directly compute the following quantities.

Var u C Ċ φ σh po H ∇0C ∇0φ ∇0σh

∂(Var)
∂∗̃

∂u
∂ũ

∂C
∂C̃

∂Ċ
∂̃̇C

∂φ

∂φ̃

∂σh

∂σ̃h

∂po
∂p̃o

∂H
∂ũ

∂(∇0C)
∂C̃

∂(∇0φ)
∂φ̃

∂(∇0σh)
∂σ̃h

(3.10)

po is only computed if a incompressibility flag is set.
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The mechanics governing equation is expressed in the weak form below.

δWu = −
∫

Ω0

δF: P dΩ0 +

∫

Γ

δu · (P · n0) dΓ0 = 0 (3.11)

C, H, optionally po, and their DOF derivatives are passed to the material model where

they are used to compute P, ∂P
∂ũ ,

∂P
∂C̃

, and optionally ∂P
∂p̃o

. The element uses the stress

tensor (P) and it’s derivatives to compute the resudial and jacobian contributions rep-

resented by the first term in Equation (3.11). If provided a traction vector or surface

pressure, they are integrated over the surface as represented by the second term in

Equation (3.11). To integrate a surface traction vector the (P · n0) term is replaced

by the provided vector, but if a surface pressure (ps) is provided it is assumed to be

a true not nominal pressure. Thus, the surface deformation must be accounted for in

integrating the surface pressure using the equation below.

P · n0 = n0 ·
(
psJF

−1
)

(3.12)

The species diffusion governing equation is written in the weak form below.

δWC =

∫

Ω0

(

δCĊ − δ∇0C · J
)

dΩ0 +

∫

Γ0

δC J · n0 dΓ0 = 0 (3.13)

The first term in the first integral in Equation (3.13) is integrated directly without any

assistance from the material model. C, ∇C, ∇σh, H, and their DOF derivatives are

passed to the material model where they are used to compute J, ∂J
∂C̃

, ∂J
∂σ̃h

, and ∂J
∂ũ . The

element uses the nominal flux vector (J) and it’s derivatives to compute the resudial and

jacobian contributions represented by the second term in the first integral in the species

diffusion governing Equation (3.13). The second integral in Equation (3.13) represents

the surface nominal species flux. If a nominal surface flux is provided it is integrated

by replacing (J · n0) with the provided flux. Surface flux can also be computed with

the BV equations by providing the material model with concentrations and voltages on

both sides of the interface.
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The electric potential governing equations written in the weak form are

δWφ = −
∫

Ω0

δ∇0φ · I dΩ0 +

∫

Γ0

δφ I · n0 dΓ0 = 0 (3.14)

C, ∇C, ∇φ, H, and their DOF derivatives are passed to the material model where

they are used to compute I, ∂I
∂C̃

, ∂I
∂φ̃

, and ∂I
∂ũ . The element uses the Nominal electric

field vector (I) and it’s derivatives to compute the residual and jacobian contributions

represented by the first integral in the electric potential governing Equation (3.14). The

second integral in Equation (3.14) represents the surface electric flux. If a surface flux

is provided it is integrated by replacing (I · n0) with the provided flux. Surface electric

flux can also be computed with the BV equations by providing the material model with

concentrations and voltages on both sides of the interface.

Just as with the small deformation electrode particle element, this element is set

up to accommodate stress assisted diffusion. This model is much more flexible in that

in can accommodate the two different forms of stress assisted diffusion characterized by

the TSEC and VSEC electrochemical-mechanical models. The small deformation elec-

trode particle element uses a small deformation approximation of TSEC stress assisted

diffusion. The hydrostatic stress σh DOFs are governed by the following equation.

δWσh
=

∫

Ω0

δσh (σh − p∗) dΩ0 = 0 (3.15)

To facilitate using both TSEC and VSEC models the equation for p∗ is determined

by the material model. In either case C, H, optionally po, and their DOF derivatives

are passed to the material model where they are used to compute p∗, ∂p∗

∂ũ , ∂p∗

∂C̃
, and

optionally ∂p∗

∂p̃o
. If TSEC coupling is used p∗ = σ:I

3 , otherwise if VSEC coupling is used

p∗ = σvol:I
3 , where σvol is the component of the cauchy stress associated with forced

volume change. In the case of incompressibility σvol = po.

In the incompressible formulation the osmotic pressure (po) is governed by the
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following equation.

δWpo =

∫

Ω0

δpo (J − 1− ΩC) dΩ0 =

∫

Ω0

δpo (Icmp) dΩ0 (3.16)

C, H, and their DOF derivatives are passed to the material model where they are used to

compute Icmp, ∂Icmp
∂ũ , and ∂Icmp

∂C̃
. The compressibility term and it’s derivatives are then

used to compute the residual and jacobian contributions represented by Equation (3.16).

The finite deformation electrochemical-mechanical element can also integrate the small

deformation approximation equations if a flag is specified. If the small deformation flag

is specified the element will effectively evaluate the equations presented in Section3.1.1.

3.1.4 Finite Deformation Hydrogel Element

This element implementation is based on a formulation published in Zhang et al.

[58], and designed for modeling water transport through incompressible hydrogels. It

operates on displacement (ũ) and chemical potential (µ̃c) DOFs. Both DOF types are

interpolated with the same interpolators; linear and quadratic forms are implemented.

At each integration point the element can directly compute the following quantities.

Var u µc H Ḣ ∇0µc

∂(Var)
∂∗̃

∂u
∂ũ

∂µc

∂µ̃c

∂H
∂ũ

∂Ḣ
∂̃̇u

∂(∇0µc)
∂µ̃c

(3.17)

The mechanics governing equation is expressed in the weak form below.

δWu = −
∫

Ω0

δF: P dΩ0 +

∫

Γ

δu · (P · n0) dΓ0 = 0 (3.18)

µc, H, and their DOF derivatives are passed to the material model where they are used

to compute P, ∂P
∂ũ , and

∂P
∂µ̃c

. The element uses the stress tensor (P) and it’s derivatives

to compute the resudial and jacobian contributions represented by the first term in

Equation (3.18). If provided a traction vector or surface pressure, they are integrated

over the surface as represented by the second term in Equation (3.18). To integrate

a surface traction vector the (P · n0) term is replaced by the provided vector, but if a
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surface pressure (ps) is provided it is assumed to be a true not nominal pressure. Thus,

the surface deformation must be accounted for in integrating the surface pressure using

the equation below.

P · n0 = n0 ·
(
psJF

−1
)

(3.19)

The water diffusion governing equations are written in the weak form below.

δWµ =

∫

Ω0

(

δµcĊ − δ∇0µc · J
)

dΩ0 +

∫

Γ0

δµc J · n0 dΓ0 = 0 (3.20)

Because C is not a DOF variable the element can not directly compute Ċ. Instead H,

Ḣ, and their DOF derivatives are passed to the material model where they are used

to compute Ċ, ∂Ċ
∂ũ , and

∂Ċ
∂̃̇u

. The element uses the nominal concentration rate (Ċ) and

it’s derivatives to compute the resudial and jacobian contributions represented by the

first term in the first integral in Equation (3.20). ∇0µc, H, and their DOF derivatives

are passed to the material model where they are used to compute J, ∂J
∂µ̃c

, and ∂J
∂ũ . The

element uses the nominal flux vector (J) and it’s derivatives to compute the resudial and

jacobian contributions represented by the second term in the first integral in the water

diffusion governing Equation (3.20). The second integral in Equation (3.13) represents

the surface nominal species flux. If a nominal surface flux is provided it is integrated

by replacing (J · n0) with the provided flux.

3.2 Material Models

The material models are responsible for storing and evaluating material proper-

ties, and evaluating constitutive equations provided state information from an element.

The different models that have been implemented are presented in the context of the

constitutive equations they evaluate. In each material model description the elements

that it can pair with are noted.
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3.2.1 Small Deformation Electrode Particle Material Model

This material model pairs with the small deformation electrode particle element

only. It is responsible for computing linear elastic stresses (σ), species fluxes (j), electric

fields (i), and their derivatives with respect to the DOFs. The equations used to compute

the linear elastic stresses (σ) and their derivatives with respect to ũ and c̃ are listed

below.

Equation ∂Equation
∂ũ

∂Equation
∂c̃

εc = Ω
3 c 0 Ω

3
∂c
∂c̃

εe = ε− εc
∂ε
∂ũ −∂εc

∂c̃

σ = C : εe C : ∂εe

∂ũ C : ∂εe

∂c̃

(3.21)

The equations used to compute the species flux (j) and it’s derivatives with respect to

c̃ and σ̃h are listed below.

Equation ∂Equation
∂c̃

∂Equation
∂σ̃h

jc = −D∇c −D ∂(∇c)
∂c̃ 0

jσ =MΩc∇σh MΩ∇σh ∂c
∂c̃ MΩc∂(∇σh)

∂σ̃h

j = jc + jσ
∂jc
∂c̃ + ∂jσ

∂c̃
∂jσ
∂σ̃h

(3.22)

The equations used to compute the electric field (i) and it’s derivatives with respect to

ψ̃ are listed below.

Equation ∂Equation

∂φ̃

i = k∇φ k ∂(∇φ)

∂φ̃

(3.23)

3.2.2 Small Deformation Binary Electrolyte Material Model

This material model pairs with the small deformation binary electrolyte element

only. It is responsible for computing linear elastic stresses (σ), ion fluxes (j), electric

fields (i), and their derivatives with respect to the DOFs. The equations used to compute
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the linear elastic stresses (σ) and their derivatives with respect to ũ are listed below.

Equation ∂Equation
∂ũ

σ = C : ε C : ∂ε
∂ũ

(3.24)

The equations used to compute the ion flux (j) and it’s derivatives with respect to c̃ are

listed below.

Equation ∂Equation
∂c̃

j = −Dp∇c −D ∂(∇c)
∂c̃

(3.25)

The equations used to compute the electric field (i) and it’s derivatives with respect to

c̃ andψ̃ are listed below.

Equation ∂Equation
∂c̃

∂Equation
∂σ̃h

ic = − (D+ −D−)∇c − (D+ −D+)
∂(∇c)
∂c̃ 0

iφ = − (D+ +D−)
zF 2c
RgT

∇φ − (D+ +D−)
zF 2

RgT
∇φ∂c

∂c̃ − (D+ +D−)
zF 2c
RgT

∂(∇φ)

∂φ̃

i = ic + iφ
∂ic
∂c̃ +

∂iφ
∂c̃

∂iφ
∂φ̃

(3.26)

3.2.3 Hyperelastic Material Model

This material model pairs with the finite deformation electrochemical-mechanical

element as the mechanics part of the material model, and the finite deformation total

Lagrangian structural element. It is responsible for computing Nominal and Cauchy

stress tensors (P and σ), the coupling pressure (p∗), and optionally the compression

measure (Icmp). Compressible and incompressible non-swelling, TSEC, and VSEC for-

mulations of this model have been implemented and are described below. In all six

formulations the PK2 tensor (S) is computed, and then it is transformed into either

the specified stress tensor and returned to the calling element. Everything computed

by the hyperelastic material models is a function of the deformation gradient (F), os-

motic pressure (po) for incompressible formulations, and nominal concentration (C) for

swelling formulations, so all of the derivatives are computed with respect to F, C, and
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po. Then chain rule is used to compute the derivatives of a specified stress or strain

tensor with respect to DOFs.

∂T
∂ũ = ∂T

∂F : ∂F
∂ũ

∂T
∂p̃o

= ∂T
∂po

∂po
∂p̃o

∂T
∂C̃

= ∂T
∂C

∂C
∂C̃

(3.27)

where T represents the specified tensor. All of the different formulations start by eval-

uating the following equations.

Equation ∂Equation
∂F

J = det (F) JF−T

C = FTF ∂FT

∂F F+ FT ∂F
∂F

(3.28)

Starting with the compressible non-swelling formulation, the equations for com-

puting S are listed below.

Equation ∂Equation
∂F

Siso = ∂Ψiso

∂C
∂2Ψiso

∂C2 : ∂C
∂F

Svol = ∂Ψvol

∂C
∂2Ψiso

∂C2 : ∂C
∂F

S = Siso + Svol ∂Siso

∂F + ∂Svol

∂F

(3.29)

The non-swelling incompressible equations for computing S are listed below.

Equation ∂Equation
∂F

∂Equation
∂po

Siso = ∂Ψiso

∂C
∂2Ψiso

∂C2 : ∂C
∂F 0

Svol = p0JC
−1 p0

(
∂J
∂F ⊗C−1 + J ∂C−1

∂F

)

JFT

S = Siso + Svol ∂Siso

∂F + ∂Svol

∂F
∂Svol

∂p0

(3.30)
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All of the different swelling formulations evaluate the following equations.

Equation ∂Equation
∂F

∂Equation
∂C

JC = 1 +ΩC 0 Ω

Je =
(
JC

)−1
J

(
JC

)−1
JF−T −

(
JC

)−1
J ∂JC

∂C

F−C =
(
JC

)−1/3
I 0 −1

3

(
JC

)−4/3
I

Fe = F−CF F−C ∂F
∂F

∂(F−C)
∂C F

Ce = FeTFe ∂FeT

∂F Fe +FeT ∂Fe

∂F
∂FeT

∂C Fe +FeT ∂Fe

∂C

(3.31)

The TSEC compressible equations for computing S are listed below.

Equation ∂Equation
∂F

∂Equation
∂C

Seiso = ∂Ψeiso

∂Ce
∂2Ψeiso

∂Ce2 : ∂Ce

∂F
∂2Ψeiso

∂Ce2 : ∂Ce

∂C

Sevol = ∂Ψevol

∂Ce
∂2Ψevol

∂Ce2 : ∂Ce

∂F
∂2Ψevol

∂Ce2 : ∂Ce

∂C

Se = Seiso + Sevol ∂Seiso

∂F + ∂Sevol

∂F
∂Sevol

∂C

S = JCF−CSeF−CT =
(
JC

)1/3
Se

(
JC

)1/3 ∂Se

∂F

−(JC)
−2/3

3
∂JC

∂C Se +
(
JC

)1/3 ∂Se

∂C

(3.32)

The TSEC incompressible equations for computing S are listed below.

Equation ∂Equation
∂F

Seiso = ∂Ψeiso

∂Ce
∂2Ψeiso

∂Ce2 : ∂Ce

∂F

Siso =
(
JC

)1/3
Seiso

(
JC

)1/3 ∂Seiso

∂F

S = Siso + JC−1p0
∂Seiso

∂F +
(

∂J
∂FC

−1 + J ∂C−1

∂F

)

p0

∂Equation
∂C

∂Equation
∂po

∂2Ψeiso

∂Ce2 : ∂Ce

∂C 0

−(JC)
−2/3

3
∂JC

∂C Seiso +
(
JC

)1/3 ∂Seiso

∂C 0

∂Seiso

∂C JC−1

(3.33)
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The VSEC compressible equations for computing S are listed below.

Equation ∂Equation
∂F

∂Equation
∂C

Siso = ∂Ψiso

∂C
∂2Ψiso

∂C2 : ∂C
∂F 0

Svol = ∂Ψvol

∂C
∂2Ψvol

∂C2 : ∂C
∂F

∂2Ψvol

∂C∂C

S = Siso + Svol ∂Siso

∂F + ∂Svol

∂F
∂Svol

∂C

(3.34)

The VSEC incompressible equations for computing S are identical to the non-swelling

equations presented in Equation set (3.30). To minimize redundancy they are not listed

again.

Algorithms for computing the PK2 stress tensor have been implemented for all

of the strain energy models described in the appendix. With the PK2 stress tensor,

it’s derivatives, and the transformation rules listed in Table 8.1 the Nominal or Cauchy

stress tensors and their derivatives are computed as specified below.

Equation ∂Equation
∂F

∂Equation
∂∗

P = FS ∂F
∂FS+F ∂S

∂F F∂S
∂∗

σ = J−1PFT J−1
(

−J−1 ∂J
∂FPFT + J−1 ∂P

∂FF
T + J−1P∂FT

∂F

)

J−1 ∂P
∂∗ F

T

(3.35)

∗ represents either C or po. With all the pieces in place derivatives with respect to the

DOFs are computed with the equations listed in Equation set (3.27).

If one of the swelling formulations are being used this model is also responsible

for computing the coupling pressure (p∗). In the case of the TSEC models, p∗ and it’s

derivatives are computed with the following equations.

Equation ∂Equation
∂ũ

∂Equation
∂∗̃

p∗ = 1
3σ : I 1

3
∂σ
∂ũ : I 1

3
∂σ
∂∗̃ : I

(3.36)

In the case of the VSEC models, p∗ is the mean of the volumetric component of the

Cauchy stress tensor (σvol) instead of being the mean of the total Cauchy stress tensor

(σ). σvol and it’s derivatives with respect to F and ∗ are computed by replacing S

and it’s derivatives in Equation set (3.35) with Svol and it’s derivatives. p∗ and it’s
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derivatives can then be computed by using σvol and it’s derivatives with Equation set

(3.36)

The compressible formulations are also responsible for computing the incompress-

ibility term (Icmp) defined in Equation (3.16). Icmp and it’s derivatives with respect

to the DOFs are computed with the following equations.

Equation ∂Equation
∂ũ

∂Equation

∂C̃

J ∂J
∂F : ∂F

∂ũ 0

Icmp = J − 1− ΩC ∂J
∂ũ −Ω∂C

∂C̃

(3.37)

3.2.4 Pseudo Finite Deformation Species Transport Material Model

This material model pairs with the finite deformation electrochemical-mechanical

element as the deformation independent component of the species transport model only.

It is responsible for computing chemical potentials, pseudo nominal species fluxes, and

pseudo nominal electric fields. Models based on the chemical potentials in the appendix

have been implemented. This model computes the deformation independent parts of

the nominal flux and electric field (J, I). Jdi and Idi will be used to represent the

deformation independent pieces of the nominal flux and electric field respectively. The

equations for computing Jdi and it’s derivatives with respect to the DOFs are presented

below.

Equation ∂Equation

∂C̃

∂Equation
∂σ̃h

ξC =MC ∂µc

∂C M
(
∂µc

∂C + C ∂2µc

∂C2

)
∂C
∂C̃

0

Jdic = −ξC∇0C −
(

∂ξC
∂C̃

∇0C + ξC
∂(∇0C)

∂C̃

)

0

Jdiσ =MΩC∇0σh MΩ∇0σh
∂C
∂C̃

MΩC ∂(∇σh)
∂σ̃h

Jdi = Jdic + Jdiσ
∂Jdic

∂C̃

∂Jdiσ

∂σ̃h

(3.38)



www.manaraa.com

52

The equations for computing Idi and it’s derivatives with respect to the DOFs are

presented below.

Equation ∂Equation

∂φ̃

Idi = k∇0φ k
∂(∇0φ)

∂φ̃

(3.39)

This model is designed for simulating swelling intercalation electrode host materials as

described in Section2.3.1.

3.2.5 Pseudo Finite Deformation Ion Transport Material Model

This material model pairs with the finite deformation electrochemical-mechanical

element as part of the ion transport model only. It is responsible for computing chemical

potentials, pseudo nominal species fluxes, and pseudo nominal electric fields. Models

based on the chemical potentials in the appendix have been implemented. This model

computes the deformation independent parts of the nominal flux and electric field (J, I).

Jdi and Idi will be used to represent the deformation independent pieces of the nominal

pseudo-flux and pseudo-electric field respectively. The equations for computing Jdi and

it’s derivatives with respect to the DOFs are presented below.

Equation ∂Equation

∂C̃

ξC =
DpC
RgT

∂µc

∂C
Dp

RgT

(
∂µc

∂C + C ∂2µc

∂C2

)
∂C
∂C̃

Jdi = −ξC∇0C −
(

∂ξC
∂C̃

∇0C + ξC
∂(∇0C)

∂C̃

)

(3.40)

The equations for computing Idi and it’s derivatives with respect to the DOFs are

presented below.

Equation ∂Equation

∂C̃

∂Equation

∂φ̃

ξC = (D+ −D−)
FC
RT

∂µc

∂C (D+ −D−)
F
RT

(
∂µc

∂C + C ∂2µc

∂C2

)
∂C
∂C̃

0

ξφ = (D+ +D−) z
F 2C
RT (D+ +D−) z

F 2

RT
∂C
∂C̃

0

Idic = −ξC∇0C −
(

∂ξC
∂C̃

∇0C + ξC
∂(∇0C)

∂C̃

)

0

Idiφ = −ξφ∇0φ −∂ξφ
∂C̃

∇0φ −ξφ
∂(∇0φ)

∂φ̃

Idi = Idic + Idiφ
∂Idic
∂C̃

∂Idiφ
∂φ̃

(3.41)
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This model is designed for simulating binary electro-neutral electrolytes as described in

Section2.3.2.

3.2.6 Finite Deformation Species Transport Coupled Material Model

This material model couples a mechanics model described in Section3.2.3 and

a pseudo finite deformation transport model described in Section3.2.4, and is respon-

sible for computing all quantities required by the finite deformation electrochemical-

mechanical element described in Section3.1.3. It is designed for simulating finitely

deforming intercalation electrode host materials. The nominal stress tensor (P), the

coupling pressure (p∗), optionally the compression measure (Icmp) defined in Equation

set (3.37), and their derivatives are computed directly with the mechanics model. The

pseudo finite deformation transport model computes the deformation independent pieces

of the nominal flux (Jdi) using Equation set (3.38), then getting the required mechanics

pieces from the mechanics model the nominal species flux (J) and it’s derivatives are

computed with the following equations.

Equation ∂Equation
∂ũ

∂Equation

∂C̃

∂Equation
∂σ̃h

C−1 ∂C−1

∂F : ∂F
∂ũ 0 0

J = C−1Jdi
∂C−1

∂ũ Jdi C−1 ∂Jdi

∂C̃
C−1 ∂Jdi

∂σ̃h

(3.42)

Assembling pieces from the two materials in a similar way, the nominal electric field (I)

and its derivatives are computed with the following equations.

Equation ∂Equation
∂ũ

∂Equation

∂φ̃

J JF−T : ∂F
∂ũ 0

I = JC−1Idi

(

J ∂C−1

∂ũ + ∂J
∂ũC

−1
)

Idi JC−1 ∂Idi
∂C̃

(3.43)

3.2.7 Finite Deformation Ion Transport Coupled Material Model

This material model couples a mechanics model described in Section3.2.3 and

a pseudo finite deformation transport model described in Section3.2.5, and is respon-



www.manaraa.com

54

sible for computing all quantities required by the finite deformation electrochemical-

mechanical element described in Section3.1.3. It is designed for simulating finitely de-

forming non-flowing electrolytes. The nominal stress tensor (P), optionally the compres-

sion measure (Icmp), and their derivatives are computed directly with the mechanics

model. The pseudo finite deformation transport model computes the deformation in-

dependent pieces of the nominal flux (Jdi) using Equation set (3.40), then getting the

required mechanics pieces from the mechanics model the nominal ion flux (J) and it’s

derivatives are computed with the following equations.

Equation ∂Equation
∂ũ

∂Equation

∂C̃

C−1 ∂C−1

∂F : ∂F
∂ũ 0

J = C−1Jdi
∂C−1

∂ũ Jdi C−1 ∂Jdi

∂C̃

(3.44)

Assembling pieces from the two materials in a similar way, the nominal electric field (I)

and its derivatives are computed with the following equations.

Equation ∂Equation
∂ũ

∂Equation

∂C̃

∂Equation

∂φ̃

I = C−1Idi
∂C−1

∂ũ Idi C−1 ∂Idi
∂C̃

C−1 ∂Idi
∂φ̃

(3.45)

3.2.8 Finite Deformation Hydrogel Material Model

This material model pairs with the finite deformation hydrogel element only. This

Hydrogel model is based on an incompressible model developed by Zhang et al. [58].

It is responsible for computing the nominal stress tensor (P), the nominal species flux

vector (J), and the nominal species concentration rate of change with respect to time

(∂C∂t = Ċ). The nominal stress tensor equation is based on the following free energy

function taken from Zhang et al. [58].

Ψ (F, J, µc) =
−RgT

Ω

[

(J − 1) ln
(

J
J−1

)

+ χ
J

]

− µc

Ω (J − 1)

+µ0

2 [F : F− 3− 2 ln (J)]

(3.46)
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Based on the above free energy function the nominal stress tensor and it’s derivatives

are computed with the following formulas.

F = H+ δ

J = detF

P = ∂Ψ
∂F = µ0

[
δ − F−T

]
− 1

Ω

[

RgT
(

J ln
[

J
J−1

]

− 1− χ
J

)

+ µcJ
]

F−T

∂F
∂ũ = ∂H

∂ũ

∂J
∂ũ = JF−T : ∂F

∂ũ

∂F−1

∂ũ = −F−1 ∂F
∂ũF

−1

∂P
∂ũ =

(

−µ0 − 1
Ω

[

RgT
(

J ln
[

J
J−1

]

− 1− χ
J

)

+ µcJ
])

∂F−T

∂ũ

− 1
Ω

[

RgT
(

ln
[

J
J−1

]

− 1
J−1 +

χ
J2

)

+ µc

]
∂J
∂ũF

−T

∂P
∂µ̃c

= − J
ΩF

−T ∂µc

∂µ̃c

(3.47)

The nominal species flux vector and it’s derivatives with respect to the DOF

vectors are computed with the following equations.

M = D
ΩRgT

JC−1

J = −M∇0µc

∂M
∂ũ = D

ΩRgT

(
∂J
∂ũC

−1 + J ∂C−1

∂ũ

)

∂J
∂ũ = −∂M

∂ũ ∇0µc

∂J
∂µ̃c

= −MBµc

(3.48)

The formula for computing (Ċ) is based on the incompressibility condition rewrit-

ten to express the concentration as a function of the deformation gradient derivative.

C =
detF− 1

Ω
(3.49)

The species concentration rate of change with respect to time, derived by differentiating

Equation (3.49) with respect to time, and it’s derivatives with respect to the DOF and



www.manaraa.com

56

DOF rate vectors are computed with the following equations.

Ċ = 1
Ω

∂J
∂t = 1

ΩJF
−T : ∂F

∂t = 1
ΩJF

−T : Ḣ

∂Ċ
∂ũ = 1

Ω

(
∂J
∂ũF

−T + J ∂F−T

∂ũ

)

: Ḣ

∂Ċ
∂˜̇u

= 1
ΩJF

−T : ∂Ḣ
∂˜̇u

(3.50)
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Geometric Considerations

There have been numerous studies which suggest that electrode particle geome-

try can have significant impact on the performance of intercalation electrodes. In order

to investigate the validity of such claims and create a hopefully useful numerical ex-

periment/design tool pertinent mathematical models have been implemented in a finite

element framework. Finite elements are ideal for exploring geometric effects because the

model implementation is for the most part geometry independent; if a geometry can be

discretized it can be simulated. However, just because a simulation can be performed

doesn’t mean that it will produce physically meaningful results. There are many choices

that must be made when setting up a finite element simulation that can have significant

impact on predictions including: application of initial and boundary conditions, choices

of various solvers, material properties and constants.

Assuming good choices have been made for the entire problem setup, inaccurate

results can still be predicted if the geometry isn’t adequately represented. For example

the thick walled sphere verification problem illustrated in Figure 5.12 is predicted to

be too stiff on coarse meshes but as the mesh is refined the simulations converge on

the accepted solution. To facilitate efficient modeling various geometries one, two, and

three dimensional models have been implemented. In Section4.1 the assumptions made

in implementing the one and two dimensional models are discussed.

The finite element model implementations provide powerful tools for studying
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geometric effects, but complicated geometries can be difficult to discretize. While there

are many powerful meshing tools which can be used to discretize complicated geometries,

meshing can be very time consuming and difficult to automate for arbitrary geometries.

As I am interested in optimization automation is a major concern. Without automated

mesh generation optimization studies must be performed manually. For example in

DeLuca et al. [22] a range of particle sizes and geometries were simulated in efforts

to identify optimal silicon electrode particle morphologies. The study provided some

interesting insight into size effects, but is was limited to simple cylindrical and spherical

shapes. In order to facilitate studies of more complicated geometries and fully automated

optimization an extended finite element method (XFEM) framework was developed.

The XFEM framework is discussed in Section4.2.

4.1 Reduced Order Model Simplifications

The model development within is all presented within a general three dimensional

context. However, in many problems of interest symmetry and assumptions about

stress, strain, and transport can be used to reduce the number of spacial dimensions

and thus the number of discrete degrees of freedom and computational expense. Two

different two-dimensional and one one-dimensional reduced order models (ROM) have

been implemented: plane-strain, axis-symmetric, and sphere-symmetric. All of the

ROMs assume there is no variation in any of the state variables in the out of plane

directions. In the two dimensional coordinate frame ROMs (plane-strain, and axis-

symmetric) the transport governing equations can be written as

Ċ + ∂Jx
∂x +

∂Jy
∂y = 0 (4.1)

with

J =






Jx

Jx




 = CM






Cxx Cxy

Cyx Cyy











∂µc

∂X

∂µc

∂X




 (4.2)
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The plane-strain simplification is based on a three dimensional Cartesian coordi-

nate frame making out of plane the z direction. While the transport equations for both

of the two dimensional ROMs are identical, the mechanics equations for the tow dif-

ferent methods take on slightly different forms. In the plane-strain ROM it is assumed

that there is no out of plane deformation; from this assumption it follows that all of

the out of plane strain components are identically zero. By inspecting the constitutive

relations listed in the appendix it can be determined that with no out of plane strain

there is no out of plane shear stresses, but the out of plane normal stress (Pzz) may

not be zero. In integrating the mechanics Equations (3.11) the nominal stress is second

order contracted with the variation of the deformation gradient, so since there is no out

of plane deformation the out of plane normal stress doesn’t contribute to the system.

Therefore, in purely mechanical systems all of the out of stress and strain components

can be neglected. In our coupled systems, however, the transport can be driven by

hydrostatic stress gradients. The out of plane normal stress contributes to the hydro-

static stress, and therefore must be computed in order to correctly model stress assisted

diffusion.

The axis-symmetric ROM is based on a cylindrical coordinate frame making out

of plane the θ direction. When changing from Cartesian to Cylindrical coordinate frames

the gradient operators must also be changed. Using the standard cylindrical gradient

operator and the assumption of no out of plane displacement, the displacement gradient

can be written as

∇0u =










Hrr Hry 0

Hyr Hyy 0

0 0 Hθθ










=










∂ux
∂X

∂ux
∂Y 0

∂uy
∂X

∂uy
∂Y 0

0 0 ux
X










(4.3)

There are no out of plane shear strains, so there can be no out of plane shear stresses.

Because Hθθ is non-zero Pθθ is non-zero. Therefore, Hθθ and Pθθ must both be accounted

for when integrating the mechanics Equations (3.11). Furthermore, Pθθ contributes to
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the hydrostatic stress and must not be neglected when modeling stress assisted diffusion.

The sphere-symmetric ROM is based on a spherical coordinate frame, and as-

sumes that state variables only vary in the radial direction. The transport governing

equations can be written as

Ċ + ∂Jx
∂X + 2Jx

X = 0 (4.4)

with

Jx = −CMxx
∂µc
∂X

(4.5)

Mxx is the xx component of the mobility tensor which depends on the deformation.

Assuming that deformation is purely in the radial direction and using the standard

spherical gradient operator the displacement gradient takes on the following form.

∇0u =










Hrr 0 0

0 Hθθ 0

0 0 Hφφ










=










∂ux
∂X 0 0

0 ux
X 0

0 0 ux
X










(4.6)

Because there are no shear strains there can be no shear stresses. The sphere-symmetric

ROM is convenient because it facilitates quick simulations.

4.2 Extended Finite Element Method

The extended finite element method extends traditional finite element methods to

accommodate changing geometries on a fixed grid. XFEM was originally developed in

efforts to model discontinuous deformation fields in crack propagation problems [7, 39,

48, 21]. Later, using level sets to represent an interface location, Miegrot and Duysinx

[51] and Wei et al. [52] employed XFEM to model the evolving geometries in structural

topology optimization problems. XFEM has also used to model discrete boundaries

in fluid flow problems. Chessa and Belytchko [14] and Sauerland and Fries [44] used

XFEM to model two phase flows, and Gerstenberger and Wall [26, 25] used XFEM to

simulate fluid-structure interaction problems.
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As has been demonstrated in several published works, XFEM provides a powerful

framework for simulating changing geometries on a fixed grid. With the requirement of

body fitted meshes removed, complicated geometries can be studied much more easily,

and complicated geometry studies can be fully automated. The mesh still, however,

places some restrictions on accuracy with which geometry can be represented. For ex-

ample the circle inclusion in a square shown in Figure 4.1 is very accurately represented

on the fine mesh, but in the coarse mesh the circle is represented as a rotated square.

Therefore, when using an XFEM framework a mesh density must be intelligently cho-

sen to adequately represent geometric features of interest. This concern is not, however,

foreign to standard FEM, and responsible engineers using FEM tools typically perform

mesh refinement studies before designing around simulation results.

Figure 4.1: XFEM representations of a circle in a square on different grids. Phase 1 is

blue and phase 2 is red.

In our XFEM implementation the phase distribution is represented by a nodally

discretized level set field, where the zero levelset represents a phase interface. The
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levelset field is interpolated linearly so no element edge can be intersected by the zero

levelset more than once. Therefore the 2x2 mesh in Figure 4.1 is the coarsest structured

grid that can be used to represent an inclusion in a square. In the coarse mesh all

of the elements are represented as triangles because they are all intersected by a phase

interface. When an element is intersected a geometric triangulation is used to determine

integration points. From the finite element assembly routine’s perspective the course

mesh consists of four quadrilateral elements which are independent of the intersection

pattern, but if the intersection pattern is changed a different triangulation will be used

to determine how to integrate the mathematical systems used to represent the physics in

each phase and along the interface. The triangulation used for determining integration

points is convenient for visualizing XFEM results.

With levelsets and intersected element triangulation, we have a framework for

representing arbitrary phase distributions on a grid. All of the details of our XFEM

implementation will not be discussed within. There will, however, be some discussion on

the treatment of constraints on the XFEM interfaces. For the purposes of being able to

simulate battery phenomena we are concerned with satisfying displacement continuity

and flux conditions at electrode-electrolyte interfaces. Butler-Volmer equations can be

used directly for determining interface fluxes, but satisfying displacement continuity

conditions is more complicated. We assume that displacements are continuous across

an interface.
∫

Γ

[[u]] dΓ(1/2) =

∫

Γ

(

u(1) − u(2)
)

dΓ(1/2) = 0 (4.7)

The superscripts in parentheses indicate which phase the variables are with respect to;

Γ(1/2) represents the interface between the two phases with respect to phase one. The

displacement continuity constraint could be directly added to the system by including

the following governing equations expressed in their weak form.

∫

Γ

δλ · [[u]] dΓ(1/2) = 0 (4.8)
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Any Lagrange multiplier will satisfy Equation (4.8) so a consistency condition

is added to stabilize the Lagrange multiplier preventing numerical issues. Setting the

Lagrange multiplier equal to the average stress times the surface normal with respect to

phase 1, the augmented Lagrange multiplier governing equation takes on the following

form.
∫

Γ

δλ ·
(

λ− {P} · n0
(1)

)

Γ(1/2)

︸ ︷︷ ︸

consistency

+γ

∫

Γ

δλ · [[u]] Γ(1/2)

︸ ︷︷ ︸

constraint

= 0 (4.9)

where {P} = 1
2

(
P(1) +P(2)

)
, and γ is a constraint scaling parameter. Assuming the

Lagrange multiplier is constant over an element

λ =

∫

Γ

(

{P} · n0
(1) − γ [[u]]

)

Γ(1/2)

/
∫

Γ

Γ(1/2) (4.10)

then from the equilibrium mechanics governing equations

∫

Γ

δu(1) ·P(1) · n0
(1)Γ(1/2) +

∫

Γ

δu(2) ·P(2) · n0
(2)Γ(2/1) (4.11)

is replaced by
∫

Γ

[[δu]] · λdΓ(1/2) (4.12)

The above method for satisfying the displacement constraint is known as the local

Lagrange multiplier method. It is convenient because It doesn’t require the addition of

any Lagrange multiplier DOFs. Another method for satisfying the displacement con-

straint without the addition of Lagrange multiplier DOFs which has been implemented

in the code is known as the Nitsche method. In the Nitsche method the equilibrium

mechanics boundary terms (Equation (4.11)) are replaced by

∫

Γ

[[δu]] ·
(
{P} · n0

(1)
)
dΓ(1/2) −

∫

Γ

δ
(
{P} · n0

(1)
)
· [[u]] dΓ(1/2)

+ γ

∫

Γ

[[δu]] · [[u]] dΓ(1/2)

︸ ︷︷ ︸

stabilizationterm

(4.13)

As will be demonstrated in the verification section both methods produce nearly equiv-

alent behavior.
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Finite Element Model Verification

Mathematical models of coupled transport and mechanics have been implemented

in a finite element framework. To verify that the models have been implemented cor-

rectly, example problems with known solutions are simulated with our finite element

framework. Known solutions, some derived analytically within and some taken from

publications, are compared to our simulation results. Verification studies for the small

deformation models are presented in Section 5.1, followed by Section 5.2 covering the

verification studies for finite deformation models.

5.1 Small Deformation Models

This first section of the verification chapter is concerned with validating the small

deformation models. The small deformation models include the linear elastic mechanical

equilibrium with species induced swelling model, the linear elastic surface stress model,

and the small deformation diffusion model with and without stress coupling.

5.1.1 Analytical: Static Sphere with Surface Stress

The governing equation for mechanical equilibrium can be written for a sphere

with no shear stresses as

∂σr
∂r

+
2

r
(σr − σt) = 0 (5.1)
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where r is the radial coordinate, σr is the radial stress component, and σt is the tangential

stress component. Assuming linear elasticity the stress components can be calculated

with Equations (5.2) and (5.3).

σr = (λ0 + 2µ0)
∂ur
∂r

+
2λ0
r
ur (5.2)

σt = λ0
∂ur
∂r

+
2

r
(λ0 + µ0) ur (5.3)

By combining (5.2) and (5.3) with (5.1) we arrive at a second order differential equation.

∂2ur
∂r2

+
2

r

∂ur
∂r

− 2

r2
ur = 0 (5.4)

Assuming ur has the form of a constant multiplied by rn we find that

ur = k1r + k2r
−2 (5.5)

Using a symmetry boundary condition (ur(r)=-ur(-r)) we find that k2=0. Next we use

the surface stress Equation (2.125) as a boundary condition to solve for k1. For a sphere

the surface stress equation reduces to

σr|r=R +
2

R

(

τ0 +
κs

R
ur|r=R

)

= 0 (5.6)

Substituting Equations (5.2) and (5.5) into (5.6) we arrive at the following solution for

radial displacement.

ur =
−τ0

µ0

2 R+ λ0R+ κs
r (5.7)

Using a similar procedure the displacement solution for an infinite cylinder in equilib-

rium with surface stress is determined to be

ur =
−τ0

µ0R+ λ0R+ κs
r (5.8)

Analytical solutions are compared to finite element solutions below.
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(a) (b)

(c)

Figure 5.1: 1µm sphere in equilibrium with surface stress. (a) displacement profile, (b)

radial stress profile, (c) tangential stress profile.

The sphere-symmetric problem is discretized with 100 bar3 elements in the in-

terior and 1 point element at the boundary; the axis-symmetric problem is discretized

with 2356 quad8 elements in the interior and 76 bar3 elements at the boundary; the 3D

problem is discretized with 864 hexa20 elements in the interior and 108 quad8 elements

at the boundary. The material properties and constants used in the simulations are

listed in Table 5.1. Figure 5.1 shows that the sphere-symmetric, axis-symmetric, and

3D models all closely match the analytical solution. The deviation in the 3D solution

can be removed with mesh refinement. For computational speed the higher dimensional

meshes are increasingly coarse. The coarser meshes show further deviation from the

analytical solution as should be expected. Similar results were obtained for an infinite

cylinder. This test verifies that the mechanical part of the model including the surface
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stress piece is correctly implemented.

Table 5.1: Particle Material Parameters

Symbol Value Units Description

E 1.124e11 Pa Young’s modulus

ν 0.28 - Poisson’s ratio

τ0 -1.0e4 N/m Initial surface stress

κs 1.0e3 N/m Tangent modulus

5.1.2 Analytical: Potentiostatic Insertion into Sphere

Cheng and Verbrugge derived analytical solutions for the concentration field and

stress fields in a sphere particle during potentiostatic charging/discharging [13]. They

used a linear elastic infinitesimal deformation model with concentration induced stresses

and species flux described by Fick’s Law. Using small deformation electrode particle

elements 3.1.1 with simple Fickian diffusion, their solution was reproduced with a finite

element simulation.
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(a) (b)

(c)

Figure 5.2: 1µm sphere during potentiostatic insertion without stress induced diffusion.

The dots represent the finite element solutions and the lines represent the analytical

solution. (a) normalized concentration profile, (b) radial stress profile, (c) tangential

stress profile.

The problem was discretized with 100 sphere-symmetric bar3 elements. The material

properties and constants used in the simulation are listed in Table 5.2. The finite element

simulation results very closely match the analytical solution. The largest deviation

occurs for early times because the simulation is started with an infinite concentration

gradient. However, as the simulation progressed the solutions converge towards the

analytical solution. This test verifies the correctness of the linear elastic implementation

not including the stress induced diffusion or surface stresses.
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Table 5.2: Particle Material Parameters

Symbol Value Units Description

E 1.124e11 Pa Young’s modulus

ν 0.28 - Poisson’s ratio

ω 1.422e-6 m3/mol Species expansion coefficient

D 1.0e-15 m2/s Species diffusion coefficient

cmax 3.111e5 mol/m3 Maximum species concentration

c0 3.111e3 mol/m3 Initial species concentration

5.1.3 Analytical: Galvanostatic Insertion into Sphere

In the same paper from which solution of the previous validation study was taken

there is an analytical solutions for the concentration and stress fields in a sphere particle

during galvanostatic charging/discharging [13]. The same finite element model that was

used in the previous verification study is used in this one. The only difference in the

two problems is that we enforce Neumann instead of a Dirichlet boundary condition.
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(a) (b)

(c)

Figure 5.3: 1µm Sphere during galvanostatic insertion without stress induced diffusion.

The dots represent the finite element solutions and the lines represent the analytical

solution. (a) normalized concentration profile, (b) radial stress profile, (c) tangential

stress profile.

The problem was discretized with 100 sphere-symmetric bar3 elements. The material

properties and constants used in the simulation are listed in Table 5.2. Over all time

steps the simulation results match the analytical solution very well. This test further

verifies the correctness of the linear elastic implementation not including the stress

induced diffusion or surface stresses.
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5.1.4 Analytical: Potentiostatic Insertion into Sphere with Surface

Stress

In an earlier paper by Cheng and Verbrugge [11], analytical solutions were devel-

oped for the concentration field and stress fields in a sphere particle during galvanostatic

charging/discharging with surface stress included. In order to verify that the sphere-

symmetric, axis-symmetric, and three dimensional versions of the governing equations

are correctly implemented, all three models are compared to the analytical solutions.

(a) (b)

(c)

Figure 5.4: (Sphere-Symmetric) 1µm sphere during potentiostatic insertion with sur-

face stress and without stress induced diffusion. The dots represent the finite element

solutions and the lines represent the analytical solution. (a) normalized concentration

profile, (b) radial stress profile, (c) tangential stress profile.
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(a) (b)

(c)

Figure 5.5: (Axis-Symmetric) 1µm sphere during potentiostatic insertion with surface

stress and without stress induced diffusion. The dots represent the finite element so-

lutions and the lines represent the analytical solution. (a) normalized concentration

profile, (b) radial stress profile, (c) tangential stress profile.
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(a) (b)

(c)

Figure 5.6: (Full 3D) 1µm sphere during potentiostatic insertion with surface stress and

without stress induced diffusion. The dots represent the finite element solutions and the

lines represent the analytical solution. (a) normalized concentration profile, (b) radial

stress profile, (c) tangential stress profile.

The 1D mesh was very finely discretized to get as close to the analytical solution

as possible, but because computational expense increases exponentially with the dimen-

sion of the elements the 2D and 3D meshes are much coarser. The sphere-symmetric

problem is discretized with 100 bar3 elements in the interior and 1 point element at

the boundary; the axis-symmetric problem is discretized with 2356 quad8 elements in

the interior and 76 bar3 elements at the boundary; the 3D problem is discretized with

2624 hexa20 elements in the interior and 192 quad8 elements at the boundary. The

deviation seen in 3D solution can be alleviated with mesh refinement. Just as in the

potentiostatic simulation without surface stress, the largest deviation occurs for early
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times because the simulation is started with an infinite concentration gradient. Most of

the material properties used in the simulation are listed in Table 5.2, and the surface

stress properties are listed in Table 5.1. This test verifies the correctness of the linear

elastic implementation with surface stresses not including stress induced diffusion.

5.1.5 Finite Element: Galvanostatic Insertion into Sphere (Fully Cou-

pled)

No analytical solutions have been developed for the fully coupled model with

stress induced diffusion included. Zhang et al. [60] simulated galvanostatic Li insertion

into Mn2O4 spheres, using a linear elastic model that is identical to ours. In order

to validate the full model Zhang’s finite element results are reproduced with our finite

element code. The black lines are taken from the published paper and the colored

lines were produced by compiling data from finite element simulations run in our finite

element code.

(a) (b)

Figure 5.7: Sphere during galvanostatic insertion

Figure 5.7(a) shows the maximum non-dimensional radial stress during Li inser-

tion as a function of the non-dimensional insertion rate. The green line was generated by

finding the absolute maximum stress predicted in by each simulation before the surface
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concentration reached the maximum concentration. In Zhang et al. [60] simulations

were stopped when the surface concentration reached the maximum concentration, but

in simulations with large applied surface currents the stresses magnitudes are still in-

creasing when the surface reaches the maximum concentration. If the simulations are

allowed to continue running until the particles reach their theoretical maximum capac-

ity, which happens after the maximum concentration is reached at the surface, then

compiling the maximum stresses produces the blue line. Figure 5.7(b) shows concentra-

tion profiles at time (t = 1000s) for galvanostatic simulations with and without stress-

diffusion coupling. Our finite element results match the published results as closely as

can be measured by overlaying graphical results. The problem was discretized with 100

bar3 elements, and all of the material properties and constants were taken from Zhang

et al. [60]. This test verifies the correctness of the fully coupled linear elastic model,

not including surface stress.

5.2 Finite Deformation Models

This section is concerned with validating the finite deformation models. The

finite deformation models include six non-linear elastic mechanical equilibrium with

species induced swelling models, and two finite deformation diffusion models with stress

coupling.

5.2.1 Analytical: Compressible Non-linear Elastic Materials with Uni-

form Stress Fields

Six different non-linear elastic models have been implemented: two different Neo-

Hookean models [8, 2], a Mooney-Rivlin model [6], an Arruda-Boyce model [2], a Gent

model [2], and a Kirchhoff model [8]. The strain energy densities and the associated

PK2 stress equations for each material model are presented in the appendix. In efforts

to verify that the stress equations were implemented correctly, the finite element models
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were loaded in ways that produce uniform stress and strain fields. The loads are applied

as surface pressures integrated over the deformed surfaces. Then using the deformation

solutions from the finite element models, stresses were calculated outside of the finite

element model and compared to those calculated with the finite element model. Because

uniform pressures are applied to the surfaces the uniform stress fields should match the

applied pressures. Four different cases were simulated with each model and with as

many different element types as could be used. The four loading cases called uniaxial

deformation, equi-biaxial deformation, equi-triaxial deformation, and shear deformation

are depicted in the figure below.

(a) (b) (c)

(d)

Figure 5.8: Compressible nonlinear structure test schematics. (a) uniaxial deformation,

(b) equi-biaxial deformation, (c) equi-triaxial deformation, (d) shear deformation.

For each of the first three cases, all planes with no applied pressures are con-

strained to remain on the same plane as the reference configuration. The blue cubes

represent the reference configurations, and the grey translucent shapes represent the

deformed configurations. The arrows represent uniform applied surface tractions. The
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characteristic deformation states of each of the four cases are described below.

uniaxial : λ1 = λ, λ2 = λ3 = 1

equi− biaxial : λ1 = λ2 = λ, λ3 = 1

equi− triaxial : λ1 = λ2 = λ3 = λ

shear : F =










1 ∂ux

∂y 0

0 1 0

0 0 1










(5.9)

Table 5.3 lists the material properties used in this set of tests, and Table 5.4

lists all of the elements and material types that were validated with this set of tests.

In each of the tests performed, the finite element computed stresses perfectly matched

the analytical ones. Element type and material model keys for the abbreviations used

in Table 5.4 are presented in tables 5.5 and 5.6 respectively. These tests verify that

the stress equations entered into the finite element models are consistent with the stress

equations used outside of the simulations and that the surface element correctly accounts

for deformation when integrating surface pressures.

Table 5.3: Compressible Elastic Material Properties

Symbol Value Units Description

E 1.0e10 Pa Young’s modulus

ν 0.30 - Poisson’s ratio

λmab 2.5 - Arruda-Boyce stretch limiting parameter

λmg 7.0 - Gent stretch limiting parameter
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Table 5.4: Compressible Elastic Materials with Uniform Stresses Verification Problems

Test No. Test Name Element Types Material Models

Bar2 Bar3 Quad4 Quad8 Hexa8 Hexa20

1 Uniaxial Deformation (Single Element) NA NA AX & PE AX & PE X X Lin, NH, NH1, MR, GE, AB, KR

2 Equi-Biaxial Deformation (Single Element) NA NA PE PE X X Lin, NH, NH1, MR, GE, AB, KR

3 Equi-Biaxial Deformation (Cylinder) NA NA 1x1 (AX) 1x1 (AX) 6x6x1 6x6x1 Lin, NH, NH1, MR, GE, AB, KR

4 Equi-Triaxial Deformation (Single Element) X X NA NA X X Lin, NH, NH1, MR, GE, AB, KR

5 Equi-Triaxial Deformation (Sphere) 1 1 10x10 (AX) 10x10 (AX) 8x8x8 8x8x8 Lin, NH, NH1, MR, GE, AB, KR

6 Shear Deformation (Single Element) NA NA PE PE X X Lin, NH, NH1, MR, GE, AB, KR

Table 5.5: Element Type Key

Symbol Description

Bar2 2-node linear symmetric sphere line element

Bar3 3-node quadratic symmetric sphere line element

Quad4 (PE) 4-node bilinear plane-strain quadrilateral element

Quad4 (PS) 4-node bilinear plane-stress quadrilateral element

Quad4 (AX) 4-node bilinear axis-symmetric quadrilateral element

Quad8 (PE) 8-node biquadratic plane-strain quadrilateral element

Quad8 (PS) 8-node biquadratic plane-stress quadrilateral element

Quad8 (AX) 8-node biquadratic axis-symmetric quadrilateral element

Hexa8 8-node trilinear hexahedral element

Hexa20 20-node triquadratic hexahedral element
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Table 5.6: Material Model Key

Symbol Description

Lin Isotropic linear elasticity

NH Neo-Hookean [8]

NH1 Neo-Hookean [2]

MR Mooney-Rivlin [6]

GE Gent [2]

AB Arruda-Boyce [2]

KR Isotropic Kirchhoff [8]

5.2.2 Analytical: Incompressible Non-linear Elastic Materials with Uni-

form Stress Fields

According to the mechanical theory, the finite element model should be able to

nearly produce compressible behavior if the Poission’s ration is set close to one half. In

order to further validate the finite element implementation the results from the code

are compared to analytical solutions to incompressible materials in two simple loading

cases pictured below.

(a) (b)

Figure 5.9: (a) Simple Stretching, (b) Equi-Biaxial Stretching.

Also, as was done in the previous validation studies, the deformation solutions
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from the finite element models were used to compute the stresses outside of the finite

element model and compared to those calculated with the finite element model. Ana-

lytical solutions are derived within for incompressible Neo-Hookean and Mooney-Rivlin

models following the work of Gerhard A. Holzapfel [33]. For incompressible hyperelas-

tic material models the third invariant, I3, is identically 1. Combining the well known

transformation equation, σ = J−1FSFT, with the PK2 equation for incompressible

materials (2.37) we arrive at the following equation for the Cauchy stress tensor [33].

σ = 2

(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2

)

B− 2
∂Ψ

∂I2
B2 − poδ (5.10)

B is the left Cauchy-Green deformation tensor and po is the osmotic pressure. The

inverse of the determinant of the deformation gradient, J−1, is intentionally left out of

Equation (5.10) because it is identically 1. The left Cauchy-Green deformation tensor

is calculated as

B = FFT (5.11)

From here we can assume a volume preserving deformation state and determine the

pressure term. In the case of simple stretching (λ1 = λ , λ2 = λ3 = 1/
√
λ) the

invariants are

I1 = λ2 + 2λ−1

I2 = λ−2 + 2λ

(5.12)

and the left Cauchy-Green deformation tensor is

B =










λ2 0 0

0 λ−1 0

0 0 λ−1










(5.13)

We assume that the deformation is caused by applying a pressure on one face while

keeping the others free. Therefore, there should be a uniform stress in the direction of
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the applied pressure while the other stresses should be zero.

σ2 = σ3 = 0 = 2
(

∂Ψ
∂I1

+ I1
∂Ψ
∂I2

)

λ−1 − 2 ∂Ψ
∂I2
λ−2 − po

⇒ po = 2
(

∂Ψ
∂I1

+ I1
∂Ψ
∂I2

)

λ−1 − 2 ∂Ψ
∂I2
λ−2

(5.14)

Substituting the osmotic pressure and the first invariant into Equation (5.10) we arrive

at the following equation for the principal stress.

σ1 = 2
(
λ2 − λ−1

)
(
∂Ψ

∂I1
+ λ−1 ∂Ψ

∂I2

)

(5.15)

The strain energy functions for the incompressible Neo-Hookean and Mooney-Rivlin

materials can be written in the form below [33].

Ψ =
µ0
2

(I1 − 3) (5.16)

Ψ = C1 (I1 − 3) + C2 (I2 − 3) (5.17)

2 (C1 +C2) = µ0, and µ0 is the shear modulus. Substituting the strain energy func-

tions into the equation for the principal Cauchy stress (5.15) we arrive at the following

analytical solutions for the principal stress experienced during simple stretching for

Neo-Hookean and Mooney-Rivlin models respectively.

σ1 = µ0
(
λ2 − λ−1

)
(5.18)

σ1 = 2
(
λ2 − λ−1

) (
C1 + C2λ

−1
)

(5.19)

Figure 5.10 shows the stress stretch curves for five different compressible hyperelastic

models, the Kirchhoff model, and the linear elastic model plotted over the analytical

solutions presented above. In the Mooney-Rivlin model we set C1 = C2.
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Figure 5.10: (Simple stretching) The points marked with asterisks, *, are data points

from finite element simulations, the color lines represent the analytical stresses calcu-

lated with the deformation states from the finite element simulations, and the black

lines represent analytical solutions to the fully incompressible models.

The presented results were produced with quad4 elements using a axissymmetric as-

sumption, but identical results, not presented within, were also produced with axissym-

metric quad8 elements, hexa8 elements, and hexa20 elements. Material properties used

in the simple stretching problem are presented in Table 5.7. The stresses computed

by the finite element models perfectly match those calculated given the deformation

states in the finite element simulations, for all material models. Both Neo-Hookean and

the Mooney-Rivlin finite element models produce solutions nearly coincident to their

analytical incompressible counterparts. The analytical solutions on the figure are com-

pletely obscured by the finite element solutions. This study verifies that the equations

are implemented correctly, the compressible models are capable accurately of simulating

incompressible behavior when there is a uniform single axis stress field, and that the

surface elements correctly account for deformation when integrating surface pressures.

Following a similar procedure as was discussed above, an analytical solution can be

obtained for Incompressible hyperelastic materials during equi-biaxial stretching (λ1 =

λ2 = λ , λ3 = 1/λ2). The analytical solutions for the incompressible Neo-Hookean and
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incompressible Mooney-Rivlin are given by the following equations, respectively

σ1 = µ0
(
λ2 − λ−4

)
(5.20)

σ1 = 2
(
λ2 − λ−4

) (
C1 + C2λ

2
)

(5.21)

Figure 5.11 shows the stress stretch curves for five different compressible hyperelastic

models, the Kirchhoff model, and the linear elastic model plotted over the analytical

solutions presented above.

Figure 5.11: (Equi-biaxial stretching) The points marked with asterisks, *, are data

points from finite element simulations, the color lines represent the analytical stresses

calculated with the deformation states from the finite element simulations, and the black

lines represent analytical solutions to the fully incompressible models.

The above results were produced with quad4 elements using a axissymmetric assump-

tion, but identical results, not presented within, were also produced with axissymmetric

quad8 elements, hexa8 elements, and hexa20 elements. Material properties used in the

biaxial stretching problem are presented in Table 5.7. The stresses computed by the

finite element models perfectly match those calculated given the deformation states

in the finite element simulations, for all material models. Both Neo-Hookean and the

Mooney-Rivlin finite element models produce solutions nearly coincident to their analyt-

ical incompressible counterparts. The analytical solutions on the figure are completely

obscured by the finite element solutions. This study verifies that the equations are
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implemented correctly, the compressible models are capable accurately of simulating in-

compressible behavior when there is a uniform two axis stress field, and that the surface

elements correctly account for deformation when integrating surface pressures.

The simple stretching and biaxial stretching problems were also set up and solved

with a plane-stress assumption, but the simulations results significantly deviated from

the analytical solution. This is because unlike in linear elasticity the plane-stress as-

sumption does not have an analytical solution for the out of plane strain component.

The out of plane strain component must either be computed with a nonlinear solver

at each gauss point, or as is typically done in the Ansys and Abaqus codes it can be

approximated based on the in plane strains and the Poisson’s ratio. In the current

version of the finite element code the out of plane strain is approximated to minimize

complications.

Table 5.7: Incompressible Elastic Material Properties

Symbol Value Units Description

E 1.0e10 Pa Young’s modulus

ν 0.49975 - Poisson’s ratio

λmab 2.5 - Arruda-Boyce stretch limiting parameter

λmg 7.0 - Gent stretch limiting parameter

All of the above non-linear elastic validation studies require some derivation

and/or interpretation, which leaves room for mistakes. In order circumvent sources of

error, a hyperelasticity benchmark problem from the Ansys verification manual , VM269

[3], was reproduced with a number of elements implemented in the femdoc code. The

sphere problem was perfectly matched with the bar2, bar3, quad4 (AX), quad8 (AX),

hexa8, and hexa20 elements, and the cylinder problem was perfectly matched with the

quad4 (AX), quad8 (AX), hexa8, and hexa20 elements. The Ansys benchmark prob-
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lem further verifies the correctness of the code implementation by comparison with a

well known solution. However, as with the previous problems in VM269 the stress field

is uniform. To verify that the code behaves correctly for a more complicated loading

case, another validation problem is taken from the paper referenced by the benchmark

problem. In Yosibash et al 2007 [54], an “exact” solution for a thick walled incom-

pressible hyperelastic hollow sphere with an applied internal pressure is reported and

compared with finite element solutions obtained with different formulations. A thick

walled incompressible hyperelastic hollow sphere, Figure 5.12, is loaded with an internal

pressure, p = 1MPa.

Figure 5.12: Thick walled sphere with applied internal pressure.

In the Yosibash paper the problem was simulated with axis-symmetric 4 node

bilinear quadrilateral elements, so initially the problem was simulated in femdoc with

the quad4 (AX) element. The plots below show the results of an initial mesh convergence

study.
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(a) (b) (c)

Figure 5.13: (a) mesh convergence, (b) displacement profile, (c) radial stress profile.

The results pictured in Figure 5.13 show much worse mesh convergence than those

presented in the Yosibash paper [54]. After comparisons with results generated using

Ansys and investigation into the Ansys theory reference [2], it was determined that some

form of selective reduce integration (SRI) scheme must have been used. A selective

reduced integration scheme taken from Belytchko et al 2004 [8] was implemented and

the mesh convergence study was repeated.

(a) (b) (c)

Figure 5.14: (a) mesh convergence, (b) displacement profile, (c) radial stress profile.

Figure 5.14 illustrates the results of the mesh convergence study with SRI. The

SRI results match Ansys and the results published in the Yoshibash paper. Mesh conver-

gence studies were performed with all of the other element in femdoc that were capable

of discretizing the domain: for a complete list refer to Table 5.9. Figure 5.15 shows the

results of the mesh convergence study that was performed using under integrated quad8

(AX) elements.
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(a) (b) (c)

Figure 5.15: (a) mesh convergence, (b) displacement profile, (c) radial stress profile.

The discrepancies in initial quad4 (AX) mesh convergence study are the result

of element locking in nearly incompressible elements. In linear elements some form

of reduced integration should be used to prevent element locking [2, 8], but quadratic

elements can simply be under integrated to mitigate the problem. Figure 5.15 demon-

strates that under integrated quadratic elements are superior to SRI linear elements for

simulating incompressible hyperelastic problems. These tests complete the validation ot

the non-linear elastic elements, as well as the finite deformation surface elements. The

material properties used in the incompressible thick walled hollow cylinder and hollow

sphere problems are listed in Table 5.8. Table 5.9 lists all of the elements and material

models that were validated by comparison with each of the incompressible non-linear

elastic test problems.

Table 5.8: Incompressible Elastic Material Properties

Symbol Value Units Description

E 3.0e6 Pa Young’s modulus

ν 0.49975 - Poisson’s ratio
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Table 5.9: Incompressible Elastic Materials Verification Problems

Test No. Test Name Element Types Material Models

Bar2 Bar3 Quad4 Quad8 Hexa8 Hexa20

1 Incompressible Simple Tension (Single Element) NA NA AX AX X X Lin, NH, NH1, MR, GE, AB, KR

2 Incompressible Biaxial Tension (Single Element) NA NA AX AX X X Lin, NH, NH1, MR, GE, AB, KR

3 VM269 Hollow Cylinder with uniform pressure NA NA AX AX X X NH1

4 VM269 Hollow Sphere with uniform pressure X X AX AX X X NH1

5 Hollow Sphere with internal pressure X X AX AX X X NH1

5.2.3 Analytical: Incompressible Non-linear Elastic Swollen Materials

with Uniform Stress Fields

The mechanical models have been verified with a large number of test problems,

but thus far swelling has been ignored. To verify the swelling piece of the finite defor-

mation mechanical models, uniform non-zero concentrations are applied, and then the

models are subjected to simple stretching (illustrated in Fig. 5.9(a)). In the following

study the deforming body is deicretized with a single element. This setup is used to

verify total and volumetric strain energy coupled compressible and incompresible mod-

els. The compressible models produce nearly incompressible behavior if the Poission’s

ration is set close to one half. Because all of the different nonlinear elastic models

have been thoroughly verified only Belytchko’s Neohookean model, Equation (8.5), is

studied in these tests. Analytical solutions are derived in a very similar manner as was

done in for the simple stretching case presented above. For incompressible materials

the deformation gradient determinant is only a function of the nominal concentration

(Jc = 1 + ΩC = J). Therefore if the body is held at a constant uniform concentration

then the deformation gradient determinant should remain constant. Then assuming

simple stretching of a swollen body, the deformation gradient takes on the following
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form.

B =










λ 0 0

0
(
J
λ

)1/2
0

0 0
(
J
λ

)1/2










(5.22)

First analytic solutions are derived for the total strain energy coupled swelling formu-

lation. Using the Neohookean model represented by (8.5) with the compressible TSEC

nominal stress Equation (2.62) and the appropriate stress transformation rule (8.1) the

PK2 stress tensor can be represented with the following formula.

S = µ0J
[

J−2/3
δ −C−1

]

+ poJ
2C−1 (5.23)

Then using the appropriate stress transformation rule, Equation (8.1), we arrive at the

following equation the Cauchy stress tensor.

σ = µ0

[

J−2/3B− δ

]

+ poJδ (5.24)

Knowing that the true stress in the free directions are zero, σ2 = σ3 = 0, we solve for

the osmotic pressure, po.

po = µ0J
−1

[

1− J1/3

λ

]

(5.25)

Then inserting the osmotic pressure into the equation for the stress in the stretch direc-

tion we find the following equation for computing the only non-zero stress component.

σ1 = µ0

[(
λ

J1/3

)2

− J1/3

λ

]

(5.26)

Next we derive the analytical solution for the incompressible volumetric strain energy

coupled mechanical model. The deformation gradient can be characterized in the same

way, but the stress equations are different. Using the general Neohookean PK2 Equation

(8.6) with the incompressible volumetric strain energy coupled model’s PK2 Equations

(3.30) the PK2 tensor can be represented with the following formula.

S = µ0
[
δ −C−1

]
+ poJC

−1 (5.27)
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Then using the appropriate stress transformation rule, Equation (8.1), we arrive at the

following equation the Cauchy stress tensor.

σ =
µ0
J

[B− δ] + poδ (5.28)

Knowing that the true stress in two of the three principal directions are zero, σ2 = σ3 =

0, we solve for the osmotic pressure, po.

po =
µ0
J

[

1− J

λ

]

(5.29)

Then inserting the osmotic pressure into the equation for the stress in the stretch direc-

tion we find the following equation for computing the only non-zero stress component.

σ1 = µ0

[
λ2

J
− 1

λ

]

(5.30)

The figure below shows the analytical principal stress solutions for both coupling types

plotted with results obtained with the various finite element implementations.

(a) (b)

Figure 5.16: (a) Total strain energy coupled (TSEC) stress, (b) Volumetric strain energy

coupled (VSEC) stress.

In Figure 5.16 “ICMP” signifies when the incompressible formulations of the

swelling hyperelastic material models described in section 3.2.6 were used. If Figure

5.16(b) “Zhang” signifies when the finite deformation hydrogel material model described
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in Section 3.2.8. The Zhang model is based on a volumetric strain energy coupled

Neohookean formulation so its’ stress solutions were included in the VSEC plot. There

are four sets of Zhang solutions: “PC” stands for prescribed chemical potential, “FC”

stands for free chemical potential, “BDF1” stands for first order backward difference

time solver, and “BDF2” stands for second order backward difference time solver. The

parameters used in the swollen simple stretching simulations are listed in Table 5.10.

All of the generated solutions appear to lie directly on top of their analytical

counterparts, but there are some discrepancies between the analytical solution and the

Zhang solutions. In the PC solutions the chemical potential is prescribed as the body is

deformed, and the stress strain behavior matches the analytical predictions. However,

in the FC solution the chemical potential is initialized in the simulation setup but then

allowed to evolve as the body is deformed, resulting in solutions which deviate from the

analytical predictions. The cause of the deviation is investigated.

We start by deriving the analytical solutions with the Zhang formulation, which

should be equivalent to the incompressible Neohookean VSEC formulation with the

Flory-Huggins incompressible stress coupled chemical potential, Equation (8.22). It

should be noted that the osmotic pressure used within is defined as the negative of the

osmotic pressure used by Zhang and co-workers [58, 34]. Applying the appropriate stress

transformation rule (8.1) to Zhang’s nominal stress tensor formula (3.47) we arrive at

the following equation for the Cauchy stress tensor.

σ =
µ0
J

[B− δ] +
1

Ω

[

RgT

(

ln

[
J − 1

J

]

+ J−1 +
χ

J2

)

− µc

]

δ (5.31)

Knowing that the true stress in two of the three principal directions are zero, σ2 = σ3 =

0, we solve for the chemical potential, µc.

µc =
µ0Ω

J

[
J

λ
− 1

]

+RgT

[

ln

[
J − 1

J

]

+ J−1 +
χ

J2

]

(5.32)

Then inserting the chemical potential into the equation for the stress in the stretch

direction we arrive back at equation (5.30). This derivation verifies that the Zhang
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solutions should indeed match the VSEC solutions. Because only the Zhang FC stress

solutions deviate from their analytical counterparts, we know that discrepancy can

be attributed to deviations in the chemical potential solution. Figure 5.17 shows the

chemical potential solutions for the various models plotted with the analytical chemical

potential solution.

Figure 5.17: Chemical potential vs. stretch

Deviations can be attributed to the nominal concentration time rate of change

(Ċ) term. Assuming the test is performed on a unit cube we can use the following

relation to represent the stretch in terms of the displacement in the direction of the

principal stretch at the outer corner.

λ1 =
∂u1
∂X

+ 1 = uo1 + 1 = λ (5.33)

u1 is the displacement field in the direction of the principal stretch, and uo1 is the

displacement in the direction of the principal stretch at the outer corner. Using the

above formula we can represent the deformation gradient, it’s inverse, and it’s time
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derivative as functions of uo1 with the following three equations respectively.

F =










uo1 + 1 0 0

0
√

J
uo1+1 0

0 0
√

J
uo1+1










(5.34)

F−1 = F−T =










(uo1 + 1)−1 0 0

0
√

uo1+1
J 0

0 0
√

uo1+1
J










(5.35)

Ḟ =










u̇o1 0 0

0 −1
2

√
J

(uo1+1)3
u̇o1 0

0 0 −1
2

√
J

(uo1+1)3
u̇o1










(5.36)

Applying the equation for Ċ (3.50) we can verify that the term should be identically

zero.

Ċ =
J

Ω

[

u̇o1
uo1 + 1

+ 2
−u̇o1
2

√

J

(uo1 + 1)3

√

(uo1 + 1)

J

]

=
J

Ω

[
1− 1

uo1 + 1

]

u̇o1 = 0 (5.37)

However, in order for the above identity to hold in the finite element simulations the

time derivatives of the displacements must be accurately computed. In the simulations

the deformation state is controlled by applying a first order time varying x displacement

on the driving face. Therefore, the x displacement can be represented as

ux = X (mt+ b) (5.38)

where t is time and m and b are constants. Because the material is incompressible, and

no material is added or removed we know that the deformation gradient determinant

must remain constant and it’s time derivative must be zero.

J̇ = 0 = λ̇1λ2λ3 + λ1λ̇2λ3 + λ1λ̇2λ3 = λ̇1λ2
2 + 2λ1λ2λ̇2 = u̇x

J

λ
+ 2λ

√

J

λ
u̇y (5.39)
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Then solving for u̇y which should be equal to u̇z we can represent the time derivative

of the displacement vector with the following equation.

u̇ =










u̇x

u̇y

u̇z










=










Xm

−Xm
2

√
J

(1+X(mt+b))3

−Xm
2

√
J

(1+X(mt+b))3










(5.40)

The time derivative of the x displacement is zero order in time, so this time solver should

have no problem adequately computing it. However, the time derivatives of the y and

z displacements are rational functions of time which cannot be adequately computed

with low order time solvers. The time solvers inability to adequately compute the

time derivatives of the y and z displacements is directly responsible for the deviations

observed in the simulations with the Zhang model. Figure 5.18 shows values that various

finite difference schemes compute for the Ċ term responsible for the deviations.

Figure 5.18: Ċ vs time for various finite difference schemes.

Both “BDF” lines show data taken directly from simulations with first and second

order in time backward difference formulas, and the rest show values computed outside

of the finite element code with other finite difference schemes. “B-D” represents a two

point backward difference formula, “CD-3” represents a three point central difference

scheme, and “CD-5” represents a five point central difference schemes. The equation
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used in computing the “B-D” points is identical to the equation implemented in the

finite element code for the “BDF1” time solver, and the points are coincident. As is

expected the five point central difference scheme does the best job of computing u̇y

and u̇z and therefore Ċ. This investigation of the Zhang et al. [58] formulation shows

that while it can be used to solve stretching problems on swollen incompressible bodies

with a finite element formulation, high order finite difference schemes must be used to

adequately compute velocities and prevent non-physical material generation.

Table 5.10: Swollen Simple Stretching Simulation Parameters

Symbol Value Units Description

E 1.2e5 Pa Young’s modulus

ν 0.4999 - Poisson’s ratio

νICMP 0.5 - Poisson’s ratio (incompresible)

Ω 6.022e-5 m3/mol Species partial molar volume

D 8.0e-10 m2/s Species diffusion coefficient

ΩCmax 32.23 - Non-dimensional maximum nominal concentration

ΩCs 7.4578 - Non-dimensional surface nominal concentration

χ 0.2 - Enthalpy of mixing parameter

RgT 2.409e3 J/mol Thermal energy energy per mol

5.2.4 Analytical: Concentration Induced Swelling of Constrained Body

The non-linear elastic mechanical models have been effectively validated, but

swelling phenomena up until now have been ignored. To verify that the model swells

the appropriately two simple incompressible swelling tests are performed by setting the

Poisson’s ratio to 0.49975 and fixing the concentration field at 1. The swelling model

is tested with two different problem setups based on the uniaxial stretching and equi-

triaxial stretching tests depicted in Figure 5.8. All faces without arrows are constrained
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with slip conditions. For the uniaxial test the stretch coefficient, ω, is set to 1, and as

was expected the cube doubled in volume by doubling it’s length in the x direction. For

the equi-triaxial test the stretch coefficient, ω, is set to 7, and as was expected the cube

swelled to 8 times it’s original volume by doubling it’s length in all directions.

5.2.5 Analytical: Diffusion in Deforming Body

The non-linear elastic mechanical models have been completely validated, so in

the following studies we work towards validating the model for diffusion on a deforming

body. For simple deformation cases with prescribed concentration and pressure fields

fluxes can be determined analytically. The flux equation implementation is validated

on bodies undergoing uniaxial and equi-triaxial deformation illustrated in Figure 5.8.

The uniaxial tests are used to validate the fluxes computed by the plane-strain and 3D

elements, and the equi-triaxial tests are used to validate the fluxes computed by the

linear and quadratic bar elements and the 3D elements.

5.2.6 Finite Difference: Galvanostatic Insertion into Incompressible

Sphere (Fully Coupled)

It has been verified that all of the individual pieces of the finite deformation

diffusion models are correctly implemented, so the next task is to verify that they all

work correctly together. Zhao et al. [61] developed a mechanically incompressible fully

coupled finite deformation model with plastic deformation. Their model was developed

in a very similar manner to ours, so efforts have been made to reproduce the results

that they report that don’t include plastic effects. Zhao’s results were computed using

a finite differencing method. The comparison problem is a 1µm radius sphere subjected

to galvanostatic insertion is simulated. The material properties and constants used in

the simulations are presented in Table 5.11. The published results from Zhao et al. [61]

are pictured below (Figure 5.19).



www.manaraa.com

97

(a) (b) (c)

Figure 5.19: Profiles of non-dimensional values taken at t = 480s (a) concentration, (b)

radial stress, (c) tangential stress.

The problem was simulated using 60 quadratic 3 node bar elements who’s formu-

lation is described in section 3.1.3. The TSEC form of the material model as described

in section 3.2.6, with mechanical and chemical models described in [61]. Material prop-

erties and parameters used in the problem setup are listed in Table 5.11. Figure 5.20

shows the results produced with the femdoc models.
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Figure 5.20: Profiles of non-dimensional values taken at various times (a) concentration,

(b) radial stress, (c) tangential stress.

There are clearly some considerable discrepancies between the solutions published

in Zhao et al. [61] shown in Figure 5.19 and the solutions produced by our models shown

in Figure 5.20. Because the concentration profile at 480s in our simulation is so much

flatter than Zhao’s, it was concluded that our model is predicting much larger fluxes.

To track down the source of the discrepancy the flux equations were investigated. Zhao

used a chemical potential of the following form.

µc = µc0 +RgT ln

(
C

1 + ΩC

)

− Ωσh (5.41)

Zhao used an sphere particle formulation, which assumes there is only flux in the radial

direction. Inserting Equation (5.41) into Equation (2.23) and specifying to spherical
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symmetry we arrive at the following equation for the radial flux.

Jr = −M
[(

RgT

C
− ΩRgT

1 + ΩC

)
∂C

∂R
− Ω

∂σh
∂R

]

(5.42)

where M is the mobility and is computed as

M =
CD

RgTλr
2 (5.43)

λr is the radial stretch. Assuming incompressibility and a constant nominal surface flux

we arrive at the following relation between time and the ratio of the reference volume

to the current volume.

V

V0
= 1 +

(
Vmax

V0
− 1

)
t

tmax
=

(
r0
R0

)3

= λθ
3 (5.44)

Then the hoop stretch at the surface can be computed as

λθ =

[

1 +

(
Vmax

V0
− 1

)
t

tmax

]1/3

(5.45)

The quantity Vmax
V0

can be computed by using the incompressibility condition (Vmax
V0

=

1+ΩCmax = 4). Next using the incompressibility condition, det (F) = λrλθ
2 = 1 + ΩC,

we arrive at the following formula for the radial stretch at the surface as a function of

time and concentration.

[λr =
1 + ΩC

λθ
2 = (1 + ΩC)

[

1 +

(
Vmax

V0
− 1

)
t

tmax

]−2/3

(5.46)

Based on the non-dimensional quantities provided in Zhao’s paper, we put the radial

flux Equation (5.42) into the following non-dimensional form.

(
ΩR0

D

)

Jr = −λr−2

[(
1

1 + ΩC

)
∂ (ΩC)

∂ (R/R0)
− ΩE

RgT

(
ΩC

3

)(
∂ (σr/E)

∂ (R/R0)
+ 2

∂ (σθ/E)

∂ (R/R0)

)]

(5.47)

Now the radial flux is in a convenient form for computing what the non-dimensional

surface flux should be given the material properties and the published solutions. To

preserve continuity the non-dimensional flux computed by Equation (5.47) at the surface
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should match the prescribed non-dimensional surface flux (ΩR0
D J0). We next extract the

following non-dimensional values from Figure 5.19.







ΩC|R=R0
≈ 0.575 ∂(ΩC)

∂(R/R0)

∣
∣
∣
R=R0

≈ 0.75

∂(σr/E)
∂(R/R0)

∣
∣
∣
R=R0

≈ −0.2 ∂(σθ/E)
∂(R/R0)

∣
∣
∣
R=R0

≈ −0.2875







(5.48)

Then we compute the radial stretch at the surface as shown below.

λr|
R = R0 & t = 480s

≈ 1.575

[

1 + 3
480

3600

]−2/3

≈ 1.25853 (5.49)

Finally putting all of the pieces together we arrive at the following surface flux.

(
ΩR0

D

)

Jsx

∣
∣
∣
∣
R=R0

≈ −1.25853−2

[(
0.75

1.575

)

− 263

(
0.575

3

)

(−0.2− 2 · 0.2875)
]

≈ 24.96

(5.50)

The computed surface flux is an order of magnitude larger than the prescribed surface

flux, see Table 5.11, indicating an inconsistency. Diving a little deeper, we prescribed a

graphically matched concentration profile in our model to see what stresses and fluxes

result. With the prescribed concentration profile the resulting stresses very closely

match those shown in Figure 5.19. There are minor discrepancies in stress gradients at

the particle center and surface but not enough to account for the order of magnitude

of difference in fluxes. Furthermore, the fluxes computed by our model that result

from prescribing the concentration field are also an order of magnitude larger than the

prescribed surface flux. We therefore conclude that there is an inconsistency in the

results published in Zhao et al. [61].
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Table 5.11: Simulation Parameters for Comparison with Zhao

Symbol Value Units Description

E 8.0e10 Pa Young’s modulus

ν 0.5 - Poisson’s ratio

Ω 8.190e-6 m3/mol Species partial molar volume

CmaxΩ 3.0 - Non-dimensional maximum concentration

D 1.0e-16 m2/s Species diffusion coefficient

ΩE
RgT

263 - Coupling parameter

(
ΩR0

D

)
J0 2.8 - Non-dimensional surface flux

tmax 3600 s Ideal time to fill particle

5.2.7 Finite Element: Hydrogel Problems

With a lack of published results for finite deformation coupled stress-diffusion

problems in the context of battery electrodes, verification problems had to be found

in other fields. Two papers by Suo and co-workers focus on the some of the details of

modeling coupled nonlinear elastic deformation and diffusion of water through hydrogels

[34, 58]. The following tests are used to verify the fully coupled finite deformation

electrode particle element in Section3.1.3 with the VSEC mechanical models and the

Flory-Huggins incompressible stress coupled chemical potential, Equation (8.22), and

the finite deformation hydrogel element in Section3.1.4. Suo employed the following

transformation so that the chemical potential could be used as a state variable.

Ŵ =W − Cµc (5.51)

With the chemical potential as a state variable the free swelling can be simulated by

enforcing that the surface potential is equal to zero. Because the hydrogel element uses

chemical potential state variables to control diffusion, chemical potential boundary con-

ditions can readily be enforced. However, in order to enforce surface chemical potentials
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with the finite deformation electrode particle element some form of boundary integral

must be evaluated. Two techniques for enforcing the surface potential condition are

implemented. In the first technique chemical potential state variables are introduced

everywhere with the addition of the following state equation.

δWµcs =

∫

Ω

δµcs [µcs − µc (C, po)] = 0 (5.52)

µcs is the new chemical potential state variable, and µc (C, po) is the true chemical

potential evaluated with the Flory-Huggins incompressible stress coupled chemical po-

tential. The new state variable drives surface flux by replacing the surface integral in

Equation 3.13 with the following term.

∫

Γ0

δC
(
−M∇0µcs

)
· n0dΓ0 (5.53)

The other method for controlling the surface flux with a chemical potential condition is

based the local Lagrange multiplier method described in section 4.2. We use a Lagrange

multiplier, Π, to represent the surface flux and replace the surface flux integral by

∫

Γ0

δCΠdΓ0 (5.54)

Then the following governing equations are used to evolve the new variable on the

surface.

0 = γ

∫

Γ0

δΠ(Π− J · n0) dΓ0 +

∫

Γ0

δΠ(µc − µc0) dΓ0 (5.55)

µc is the true chemical potential on the surface, µc0 is the prescribed surface potential,

and γ is a constant that determines how well the constraint is enforced. The first term

is know as the compatibility condition, and the second is the constraint. Treating Π as

a constant over each surface element the new variable can be condensed out as follows

Π =

∫

Γ0

δΠJ · n0dΓ0 +
1
γ

∫

Γ0

δΠ(µc0− µc) dΓ0

∫

Γ0

δΠdΓ0
(5.56)
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For future reference the method of chemical potential boundary enforcement represented

by Equation (5.53) will be referred to as the “State Variable Method”; the other method

for enforcing a chemical potential controlled flux boundary will be referred to a the

“Local Lagrange Multiplier Method”.

With all of the pieces in place we start with a simple 1D hydrogel problem.

The first problem considered involves a hydrogel draining under a weight. An initially

unconstrained hydrogel is allowed to equilibrate under free swelling conditions, zero

surface chemical potential, then the gel is placed in a box constraining the X and Y

faces from spreading under an applied pressure. Then a weight is plasec on a rigid

permeable plate on top of the gel changing the chemical potential of the gel and causing

water to slowly drain from the hydrogel. The figure below (5.21) illustrates the problem

setup.

Figure 5.21: Diagram of gel draining under weight problem

Because the problem is 1D in space with a constant surface pressure and chemical

potential, we know the concentration on the surface must also be constant. Therefore,

either of the above methods can be used to enforce the surface chemical potential con-

straint, but the problem could be equivalently be set up by applying the same surface

pressure with a potentiostatic boundary condition. The problem was first simulated

with the chemical potential constraint enforced with each method, then the equivalent
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simulation was run with a Derichlet concentration boundary condition that was taken

from the other simulations. The weight is simulated by integrating a constant nominal

pressure, ps, over the surface. Material properties and parameters used in the hydrogel

simulations are listed in Table 5.12. The figures below (5.22) show the results of the

three simulations with the results from Zhang et al. [58] overlaid.

(a) (b)

Figure 5.22: State Variable Method (a) z stretch, (b) chemical potential.

(a) (b)

Figure 5.23: Local Lagrange Multiplier Method (a) z stretch, (b) chemical potential.
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(a) (b)

Figure 5.24: Potentiostatic with pressure (a) z stretch, (b) chemical potential.

In Figures 5.22, 5.23, and 5.24 the colored lines are the results from our finite

element simulations, the black lines are Zhang’s results from a finite difference model,

and the blue dots are Zhang’s results from a finite element model. All three of our

simulations were run on a 1x1x100 mesh of 20 node quadratic brick elements. All three

methods effectively simulate this problem. Furthermore, the agreement of the potentio-

static simulation verifies our understanding of the link between concentration, pressure,

and chemical potential. All of the pictured results were produced with compressible

formulations, but the incompressible formulations produced equivalent results.

Next efforts were made to reproduce the free swelling cube results from Zhang

et al. [58]. In this problem an initially dry unit cube of hydrogel is placed in water

and allowed to swell freely until it reaches an equilibrium state. The published results

only show the deformed cube with stress contours plotted on the surface at four times.

We show the equivalent results produced by our simulation. The results plotted below

were produced by simulating one eight of the domain with 512 eight node hexahedral

incompressible hydrogel elements described in Section 3.1.4.
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Figure 5.25: Snapshots of swelling cube with non-dimensional stress contours

The formulation is highly unstable, and the nonlinear solves during the first time

steps had to be severely under-relaxed. Also, the simulation had to be started with

tiny time steps. The sizes of the time steps were slowly increased so a steady state

solution could be found without too much computational cost. It should be noted

that the formulations presented in [58] are difficult to solve using numerical techniques

and without some form of stabilization many problems, including this free swelling cube

problem, will be non-convergent. The results closely match their published counterparts

verifying the implementation of the hydrogel element.
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Table 5.12: Simulation Parameters for Comparison with Zhang

Symbol Value Units Description

E 1.2e5 Pa Young’s modulus

ν 0.499999 - Poisson’s ratio

Ω 6.022e-5 m3/mol Species partial molar volume

D 8.0e-10 m2/s Species diffusion coefficient

ΩCmax 32.23 - Non-dimensional maximum nominal concentration

ΩCs 7.4578 - Non-dimensional surface nominal concentration

χ 0.2 - Enthalpy of mixing parameter

RgT 2.409e3 J/mol Thermal energy energy per mol

5.3 Extended Finite Element Model Verification

In previous sections the finite element implementations are rigorously verified. In

order to verify that our XFEM implementations produce meaningful solutions, simula-

tion results produced by using our standard FEM implementation are compared with

equivalent results generated with our XFEM implementation. First the mechanical

models, including the no slip interface condition, are verified with a cantilever beam

problem. Then the full electrode models are verified with a Li half cell problem.

5.3.1 Cantilever Beam FEM vs XFEM

A cantilever beam problem is studied with standard FEM models using body

fitted meshes and XFEM models. Using XFEM the model, the problem is set up in

two different ways. In the first setup (referred to as the one phase XFEM beam) the

beam is only half of the domain. The other half of the domain treated as void and

the beam separates from the void phase. In the second setup (referred to as the two

phase XFEM beam) the beam is made of two identical phases, and it fills the whole

domain. Diagrams of the three different ways of setting up the problem are shown in



www.manaraa.com

108

the following figure.

(a) (b)

(c)

Figure 5.26: Cantilever beam with distributed load (a) One phase FEM beam, (b) One

phase XFEM beam, (c) Two phase XFEM beam.

The beam problems are setup as dimensionless. The beam is 1 length unit thick

and 20 length units long. The surface pressure (ps) is chosen such that significant

deformation is predicted. A large pressure is chosen to facilitate the verification of the

XFEM finite deformation mechanics. The one phase XFEM beam problem is used to

demonstrate that we can correctly integrate distributed loads on XFEM interfaces. The

two phase XFEM beam problem is used to demonstrate that the interface continuity

conditions work correctly. The parameters used in the simulations are presented in the

following table.

Table 5.13: Simulation Parameters for Cantilever Beam Study

Symbol Value Units Description

E 1.0 - Non-dimensional Young’s modulus

ν 0.25 - Poisson’s ratio

ps 5.0e-5 - Non-dimensional surface pressure

γLLM -1.0e3 - LLM constraint scaling parameter

γNit 1.0e2 - Nitsche constraint scaling parameter
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In the following mesh refinement studies the X axes show the number of elements

in the length direction. In each simulation the number of elements in the thickness

direction is chosen such that the elements remain square, so the number of elements in

the length direction are incremented by 20 and the number of elements in the thickness

direction are incremented by one during mesh refinement. The one phase XFEM beam

problem is however an exception because the XFEM domain is twice as thick as the

beam domain.

Figure 5.27(a) demonstrates that with mesh refinement, all three problem for-

mulations converge on the same results. Furthermore by comparing the convergence

behaviors of the two different methods for satisfying displacement continuity it appears

that both methods show very similar mesh refinement behavior. To further investigate

the behaviors of the two displacement continuity formulations the interface displacement

jumps are presented in Figure 5.27(b).
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Figure 5.27: Mesh refinement results (a) Tip displacement, (b) XFEM interface dis-

placement jump.

In Figure 5.27 “FEM” represents the one phase FEM beam, “Split” represents

the one phase XFEM beam, “LLM” represents the two phase FEM beam with the Local

Lagrange Multiplier displacement continuity formulation, and “Nit” represents the two

phase FEM beam with the Nitsche displacement continuity formulation. Shown in
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Figure 5.27 the Nitsche does a better job of satisfying displacement continuity, but

with mesh refinement the displacement jump computed when using the Local Lagrange

Multiplier method appears converge on the jump computed when using the Nitsche

method. Furthermore, even on the most coarse mesh the displacement jumps are more

than five orders of magnitude smaller than the computed displacement of the beam tip.

The cantilever beam studies are used to demonstrate that our treatment equi-

librium mechanics within the XFEM framework produces accurate and reliable results.

The two phase XFEM beam problems demonstrate that both implemented methods for

satisfying interface displacement continuity work and are nearly equivalent. The One

phase XFEM beam problem demonstrates that we can accurately integrate loads on

XFEM interfaces. There are many more studies that should be performed to rigorously

verify the XFEM implementations, but this work will be left for colleagues and future

researchers.

5.3.2 Si Cylinder in Electrolyte (Half Cell) FEM vs XFEM

In efforts to verify the fully coupled finite deformation-transport XFEM imple-

mentation a simple Li half-cell problem is studied. The half-cell consists of a cylinder

of Si embedded in a cube of electrolyte with Li foil on the top and bottom of the cube.

Lithiation is controlled by an applied electric potential difference between the Si and

the Li foil. A diagram of the problem is illustrated in Figure 5.28.
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Figure 5.28: Li-Si half cell problem

Using the symmetries in the x and y axes through the center of the cylinder only

1/4 of the domain is actually simulated and the problem is simplified to 2D by assuming

plane-strain. Example body-fitted and XFEM meshes used for simulating the example

half-cell problem are pictured below.

(a) (b)

Figure 5.29: Example Half-Cell Meshes (30x30 grids) (a) body-fitted mesh, (b) XFEM

mesh.

The green dots represent the locations where variables are plotted. Plotting loca-
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tions where chosen near the interface because most of the differences between standard

FEM and XFEM are localized to interfaces. The problem is convenient for testing the

XFEM battery models because it incorporates all piece developed for simulating battery

electrodes in one simulation, including: finite deformation mechanics in swelling bodies,

interface displacement continuity, species transport through electrode host materials,

ion transport through binary electro-neutral electrolytes, Butler-Volmer electrode elec-

trolyte interface reaction kinetics. Furthermore, the simple geometry allows for easy

comparison with standard FEM models. The displacement continuity condition has

been shown to work, so displacement data won’t be presented again. The half-cell prob-

lem was simulated with varying mesh densities. Parameters and material properties

used in setting up the problem are listed in Table 5.14. State variables at the specified

locations in the electrode particle and electrolyte are plotted over time. The evolutions

of phase 1 and phase 2 state variables over time are presented for the various mesh

densities in Figures 5.30 and 5.31 respectively.
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Figure 5.30: Half-Cell problem phase 1 solutions at various mesh densities (FEM so-

lutions are solid lines, XFEM solutions are dashed lines) (a) Electric Potential, (b)

Concentration, (c) Hydrostatic Stress.



www.manaraa.com

114

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

Time

P
ot

en
tia

l

 

 

20
40
60
80

(a)

0 2 4 6 8 10
0.23

0.235

0.24

0.245

0.25

0.255

0.26

Time

C
on

ce
nt

ra
tio

n

 

 

20
40
60
80

(b)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2x 10
−3

Time

P
re

ss
ur

e

 

 

20
40
60
80

(c)

Figure 5.31: Half-Cell problem phase 2 solutions at various mesh densities (FEM so-

lutions are solid lines, XFEM solutions are dashed lines) (a) Electric Potential, (b)

Concentration, (c) Natural Log of the Determinant of the Deformation Gradient.

The different colors represent solutions computed on different mesh densities, for

example “20” represents solutions computed on a 20x20 grid. All of the lines in the

phase one variable plots (Figure 5.30) lie almost directly on top of one another, provid-

ing confidence that the standard FEM and XFEM models are nearly equivalent. Mesh

refinement appears to have little impact on the phase one solutions, but it should be

noted that the XFEM problem did not converge when attempts were made to run it

on a coarser mesh. While the phase 1 solutions great agreement, the phase 2 solutions

do show some deviation. By examining the plots in Figure 5.31 it can be observed

that the FEM and XFEM “concentration” and “pressure” solutions show some devia-

tion. The largest deviation between the fem and XFEM solutions are seen on the most
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coarse mesh, but with mesh refinement the FEM and XFEM solutions approach one

another. Although the phase two solutions are more significantly impacted by switching

to XFEM, both models appear to approach the same solution with mesh refinement.

Furthermore, even though there is some deviation in the phase two solutions, all models

even on the most coarse grids produce very similar trends. Having established that the

XFEM solutions produce meaningful and reliable results the new tool can be used in

electrode design problems with much greater confidence.

Table 5.14: Simulation Parameters for Li-Si Half Cell Problem

Symbol Value Units Description

Ẽ1 1.124e11 Pa Young’s modulus Silicon

Ẽ2 1.124e10 Pa Young’s modulus Electrolyte

ν1 0.28 - Poisson’s ratio Silicon

ν2 0.475 - Poisson’s ratio phase 2

Ω 8.190e-6 m3/mol Partial molar volume of Li

Cmax1 3.663e5 mol/m3 Maximum nominal concentration Silicon

Cmax2 3.920e3 mol/m3 Maximum nominal concentration Electrolyte

C01 3.663e3 mol/m3 Initial nominal concentration phase 1

C02 1.0e3 mol/m3 Initial nominal concentration Electrolyte

D1 1.0e-15 m2/2 Li diffusion coefficient in Silicon

D2+ 7.5e-13 m2/2 Li ion diffusion coefficient Electrolyte

D2− 7.5e-13 m2/2 Anion diffusion coefficient Electrolyte

k 1.0e-13 m2.5/s/mol0.5 Interface reaction rate coefficient

U ′ Baggetto et al. [4] m2.5/s/mol0.5 Open circuit potential of Li in Si

RgT 2.409e3 J/mol Thermal energy per mol

F 9.649e4 C/mol Faraday’s constant
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Studies And Discussion

A simple problem involving a cylinder particle immersed in a cube of electrolyte

is simulated with various parameters with both the small deformation models and the

finite deformation models. The simulation results are used to highlight the importance

of including finite deformation mechanics. Next the same cylinder in electrolyte problem

is simulated using XFEM and deviations from the body fitted mesh results are discussed.

Finally simulation results from a number of particle in electrolyte simulations run on

randomly generated XFEM meshes will be used to highlight the versatility of the new

tools.

6.1 Small Versus Finite Deformation

While coupled mechanics-diffusion has received a fair amount of attention in the

battery modeling community, most researchers take advantage of small deformation

approximations to simplify their models [18, 17, 60, 59, 27, 29, 11, 13, 12, 23]. Small

deformation approximation models can be useful in providing scientists and designers

with insight into the behavior of electrodes during battery operation, but for materials

such as silicon which undergo significant deformation during lithiation small deformation

approximations can produce misleading predictions. To highlight the importance of us-

ing finite deformation model formulations some example particle in electrolyte problem

solutions will be discussed. In all of the example problems silicon material properties
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from Table 6.1 are used unless otherwise noted.

Table 6.1: Silicon Material Parameters

Symbol Value Units Description

E 1.124e11 Pa Young’s modulus

ν 0.28 - Poisson’s ratio

Ω 8.190e-6 m3/mol Li partial molar volume

D 1.0e-15 m2/s Diffusion coefficient

Cmax 3.663e-5 mol/m3 Maximum Li concentration

ks 1.0e-13 m2.5/
(
mol0.5s

)
Surface reaction rate

A uniformly stretched spherical 1µm radius particle of silicon was simulated with

no swelling (Ω = 0) and fixed surface concentration. The simulation results do not

provide much physical insight because they remove the swelling coupling, which is crit-

ical in modeling lithium absorption into silicon, but they highlight the importance of

including deformation in the diffusion equations. The initial and boundary conditions

used in the problem are listed in the Table 6.2. The problem was simulated on a mesh

of 60 bar elements using small and finite deformation sphere-symmetric formulations.

Table 6.2: Initial & Boundary Conditions (diffusion in stretched sphere)

Initial and Boundary Conditions

C
Cmax

∣
∣
∣
t=0

= 0.01 in Ωs

u = x in Ωs

C
Cmax

= 1.0 on Γs

In Table 6.2 Ωs represents the interior of the sphere particle and Γs represents

it’s surface. By comparing the concentration profiles produced by the small and finite

deformation models in Figure 6.1 it is clear that the small deformation model over pre-
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dicts the diffusion rate. In this problem there is no species induced swelling, and thus

no pressure coupling. Therefore, the differences in the solutions is purely attributed

to the fact that small deformation model has no mechanism for capturing the effects

of increasing diffusion distances when the cylinder is stretched. In fact when the same

simulation is run with no deformation both models predict the same transport behavior

predicted by small deformation model. In Figure 6.1 “Concentration” is the concentra-

tion normalized by the maximum concentration.
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Figure 6.1: Concentration profiles of stretched sphere at various snapshots in time. The

small deformation solutions are represented by solid lines and the finite deformation

solutions are represented by the dashed lines.

The diffusion in stretched sphere study highlights the importance of considering

deformation when modeling diffusion, but neglects the stress coupling effects caused

by including specied induced swelling. To investigate the stress coupling effects we

again study a 1µm radius silicon particle, but this time swelling and the Butler-Volmer

surface kinetics model is used. This set of simulations is pseudo two phase because the

particle is explicitly modeled, but the electrolyte is idealized as fixed and uniform ion

concentration and electrolyte electric potential on the particle surface. The initial and

boundary conditions used in the pseudo two phase silicon sphere problem are listed in

the Table 6.3.
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Table 6.3: Initial & Boundary Conditions (pseudo two phase sphere in electrolyte)

Initial and Boundary Conditions

Cs

Csmax

∣
∣
∣
t=0

= 0.01 in Ωs

u = 0 at x = 0

φs = f (t) on Γs

Ce

Cemax

= 0.255 on Γs

φe = 0.0 on Γs

In Table 6.2 Ωs represents the interior of the sphere particle, Γs represents the

particle surface, and x = 0 represents the particle center. The variables with the

underscore “s” are silicon state variables and the variables with the underscore “e” are

electrolyte state variables. For example Cs is the neutral lithium concentration within

the silicon particle, and Ce is the lithium ion concentration within the electrolyte. To

drive the simulation the electric potential of the particle is linearly swept over the open

circuit potential in 1000 seconds.
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Figure 6.2: Pseudo two phase sphere in electrolyte (a) normalized concentration, (b)

normalized displacement, (c) normalized radial stress, (c) normalized hoop stress. The

small deformation solutions are represented by solid lines and the finite deformation

solutions are represented by the dashed lines.

Figure 6.2 shows normalized concentration, normalized displacement, normalized

radial stress, and normalized hoop stress profiles at various snapshots in time. There

are a number of similarities in the simulation results including similar profile shapes

and dffusion rates, but we are more concerned with the differences. By studying Figure

6.2 it can be observed that the small deformation over predicts diffusion rates, swelling,

and elastic stresses. The diffusion rate over predictions could cause designers to expect

faster charging times. Furthermore, due to swelling inaccurate diffusion predictions

cause inaccurate mechanics predictions. It is clear by examining Figures 6.2(b), 6.2(c),

and 6.2(d) that there are significant mismatches between the small and finite deforma-
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tion models’ predictions, but because the small deformation model over predicts the

displacements and stresses using the small deformation models would effectively lead to

conservative predictions when studying such a simple problem.

To demonstrate where using the small deformation models could be non-conservative

we next look at another silicon particle in electrolyte problem, but this time with more

interesting geometry and constraints. The problem consists of a cube particle that is

anchored to a rigid cylindrical bar which passes through it’s center. The problem regions

are illustrated on a picture of the finite element mesh in Figure 6.3, and the initial and

boundary conditions are listed in Table 6.4.

Figure 6.3: Si cube in electrolyte anchored to rod (problem regions on finite element

mesh).



www.manaraa.com

122

Table 6.4: Initial & Boundary Conditions (pseudo two phase cube in electrolyte an-

chored to rod)

Initial and Boundary Conditions

Cs

Csmax

∣
∣
∣
t=0

= 0.01 in Ωs

u = 0 on Γa

uy = 0 on Γx

ux = 0 on Γy

φs = f (t) on Γφ

Ce

Cemax

= 0.255 on Γφ

φe = 0.0 on Γφ

As is indicated in Figure 6.3 and Table 6.4 we take advantage of symmetry and

only modeled a quarter of the particle. Plane strain-assumptions were used to reduce

the problem two dimensions. Pictured below are snapshots of the particle at various

times with various field color mapped onto the deformed particle. In the pictures the

results are reflected across the symmetry boundaries so the full particle can be viewed.

Figure 6.4: Concentration snapshots over time (Small deformation cube anchored to

cylinder).
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Figure 6.5: Concentration snapshots over time (Finite deformation cube anchored to

cylinder).

Starting with a comparing Figures 6.4 and 6.5 it can be observed that both

models produce very similar results at early times, when deformation is small, but

as time progresses the results slowly step away from each other. At the end of the

simulations the range of concentrations predicted by the small deformation model is

about 57% of the range predicted by the large deformation model, which will lead

to an under-prediction of stresses. The reasons for the deviation are two-fold. First,

similar to the previous example, the finite deformation model understands that as the

particle swells the transport species has to travel longer distances to diffuse through

the particle while the small deformation model has no mechanism accounting for this

phenomena. The second reason for the deviation in the concentration state can be

attributed to different forms of pressure coupling. Both models use the same hydrostatic

pressure coupled chemical potentials, but the pressure terms are computed with different

mechanical models. Although the small deformation model in general tends to over

predict stresses and thus hydrostatic pressure, it under predicts pressure gradients which

drive diffusion. The under prediction of pressure gradients causes an under prediction

of pressure coupling which is clear when comparing the concentration fields at the final

time step, which is near steady-state.
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Figure 6.6: Displacement magnitude snapshots over time (Small deformation cube an-

chored to cylinder).

Figure 6.7: Displacement magnitude snapshots over time (Finite deformation cube an-

chored to cylinder).

Similarly to the previous example problem the displacement responses predicted

by small and finite deformation models are very similar at early times when concentra-

tions and swelling are low, but the small deformation model increasingly over predicts

the displacement response as swelling increases. Despite the fact that both models

predict almost identical surface flux rates and utilization states, the small deformation

over predicts the maximum deformation at the end of the simulation by ∼25%. This

over prediction is significant and on it’s own should be motivation enough to switch to

a finite deformation model. As the three free state variables used in the models are

concentration, displacement, and hydrostatic pressure, hydrostatic pressure plots are

shown below to provide a complete picture states predicted by the two models.
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Figure 6.8: Pressure snapshots over time (Small deformation cube anchored to cylinder).

Figure 6.9: Pressure snapshots over time (Finite deformation cube anchored to cylinder).

As was demonstrated in the previous example problem, the small deformation

model increasingly over predicts stress magnitudes and thus hydrostatic pressure mag-

nitudes as deformation becomes increasingly significant. This is a trend that can be

observed in a wide range mechanics problem involving large deformations, and in gen-

eral when modeling large deformation mechanics small deformation models can not be

counted on to produce accurate predictions. In the current example problem, although

the pressure magnitudes predicted by the two models drift away from each other as

swelling increases, the pressure distributions are very similar. Therefore, even though

the small deformation model should not be counted on to produce accurate predictions,

it can be useful in providing insight into the details of the dynamic behavior of intercala-

tion electrodes. Principal stresses are considered next in efforts to find more significant

discrepancies in the mechanical predictions of the small and large deformation models.
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Figure 6.10: 3rd principal stress snapshots over time (Small deformation cube anchored

to cylinder).

Figure 6.11: 3rd principal stress snapshots over time (Finite deformation cube anchored

to cylinder).

The differences in the first two principal stresses predicted by the two models are

very similar to the differences in the predicted pressure fields, e.g. magnitude are off but

distributions are very similar. However, the third principal stress predictions deviate in

magnitude and distribution. This is most clear when comparing the predicted fields on

the last time step. The small deformation model predicts that the largest compressive

stresses will exist at the corners while the large deformation model predicts that the

largest compressive stresses will exist at the center of the particle where it is anchored to

a rigid bar. In the example problems we are modeling silicon electrodes. Because silicon

is a brittle material it’s compressive strength far exceeds it’s tensile and shear strength,

and it is thus not likely that silicon electrodes will mechanically fail in compression.
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Therefore, when considering silicon the mismatches in the third principal stresses are

not a major concern. The silicon cube anchored to bar problem demonstrates that even

with fairly simple geometries and constraints the small and large deformation models can

predict significantly different results. Therefore, when modeling system which undergo

significant deformation a proper finite deformation model should be used.

6.2 State of the Art Modeling Capabilities

With all of the tools in place we now have a very powerful tool for studying

geometric effects on electrode structures. To demonstrate the utility of the new tools

the simulation results of randomly generated micro-structures during voltage controlled

lithiation are shown. In the following example problems the particles are grounded and

the upper surface of the electrolyte is connected to lithium foil which is swept over

the open circuit potential range in 1000s. All of the example problems are run with a

2D plane-strain assumption. Material properties and other simulation parameters used

in the following example problems are listed in Table 5.14. Random geometries were

created by taking the union of several circles of the phase used to represent silicon who’s

location and size were determined by a random number generator. Simulation results

of the six randomly generated geometries pictured in Figure 6.12 are discussed below.
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Figure 6.12: Six randomly generated particles in a cube of electrolyte.

Non-dimensional concentration profiles experienced by the first geometry at four

snapshots in time are pictured in Figure 6.13.

Figure 6.13: Concentration snapshots over time (Random Half-Cell 1).

One of the major shortcomings of previous works was a partial or in come cases a

complete lack of mechanical predictive capabilities. As mechanics is one of the major fo-

cuses and contributions of the works within, the novel mechanical predictive capabilities

are demonstrated below by showing Von-Mises stress predictions at various snapshots

in time for various random geometries.
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Figure 6.14: Von-Mises stress snapshots over time (Random Half-Cell 1).

Figure 6.15: Von-Mises stress snapshots over time (Random Half-Cell 2).

Figure 6.16: Von-Mises stress snapshots over time (Random Half-Cell 3).
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Figure 6.17: Von-Mises stress snapshots over time (Random Half-Cell 4).

Figure 6.18: Von-Mises stress snapshots over time (Random Half-Cell 5).

Figure 6.19: Von-Mises stress snapshots over time (Random Half-Cell 6).

With standard meshing tools it would be very difficult to automate the mesh-

ing of such complicated shapes. With XFEM, however, all of the shapes can be easily
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simulated on a single structured grid. This example demonstrates that XFEM greatly

simplifies the use of finite element tools and opens the door for automated geometry

studies and topology optimization. In previous studies smooth geometries are simulated.

Such simulations provide interesting insight into the coupled mechanics-transport phe-

nomena observed in batteries during operation. However, in most commercial batteries

electrodes are agglomerates of electrode host material and a conductive binder impreg-

nated by electrolyte. The electrode particles tend to be somewhat spherical in shape,

but they typically have some roughness, corners and edges, which can impact the be-

havior.
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Chapter 7

Future Work And Conclusions

Physical models of some of the primary processes involved in battery operation

have been developed including: equilibrium elastic swelling, species transport through

electrode particles, electron transport through electrode particles, ion transport through

electrolyte, and redox reactions at the electrode particle electrolyte interfaces. This

chapter begins with a discussion of some work which could be done in the future to

further extend the capabilities and utility of femdoc in Section 7.1. Then in the final

Section 7.2 there is discussion of some conclusions that can be drawn from the works

presented.

7.1 Future Work

The XFEM implementation of the models described within provide a very pow-

erful tool for studying battery micro-structures. Now that body fitted meshes are no

longer needed a single mesh can be used to easily simulate arbitrary electrode geome-

tries. The only things limiting geometries that can be simulated are the grid size and

computational power. In our framework the minimum capturable feature size is limited

by the size of the elements being used to represent the feature. If there is a desire

to model smaller features the mesh grid must be refined, but at the cost of increased

computational demand. This cost, however, is common to standard FEM, so we have

removed the requirement to have body fitted meshes without adding new limitations.
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With such a powerful new numerical experiment/design tool some interesting

and novel studies can be performed. For example, level-set fields can be generated from

pictures or a CAT scan. This could be an invaluable tool in developing and performing

new validation studies, as it allows one to model actual observed geometries instead of

idealized geometries. As validation is the major missing piece of the model development

documented within, developing and performing validation studies would add great value

to the developed models in the form of credibility as well as help advance the battery

modeling community by providing new studies that could be used to validate future

models.

In topology optimization a material distribution is sought which optimizes some

performance criteria while satisfying constraints. The finite element modeling frame-

work has been written with optimization in mind. We have many physical system

representations in our framework, but only a few are currently correctly setup to work

with our XFEM topology optimization framework. To facilitate reliably using XFEM

in the optimization framework a system must continue to be solvable as the optimizer

evolves the phase distributions. Unfortunately, it is easy to create phase distributions

which result in un-solvable systems when using the current XFEM cell micro-structure

framework. XFEM specific pre-conditioners have been implemented to help correct lin-

ear system ill conditioning caused narrowly intersecting elements. The pre-conditioners

have been demonstrated to be effective on other physical systems implemented in the

XFEM framework, but unfortunately seem to have little to no influence on the un-

solvable cell micro-structure problems. If the XFEM cell micro-structure framework

can be made to reliably solve as phase distributions evolve we will have a very powerful

tool to help guide the development new micro-structured cell designs.

State of the art fully coupled species/ion transport-finite deformation elasticity

models have been implemented in a FEM/XFEM framework to facilitate numerical

studies for both scientific and design purposes. The implemented modeling capabilities



www.manaraa.com

134

represent an advancement in the battery modeling community, but there are a number

of physical phenomena associated with battery operation that have been ignored. Of the

ignored phenomena there are a several which involve discrete moving interfaces includ-

ing: fracture mechanics, solid-electrolyte interface layer (SEI) growth, dendrite growth,

and multi-phase diffusion. These phenomena pose significant challenges to people using

traditional FEM techniques. A commonly used techniques for modeling discrete moving

interfaces with traditional finite elements use an arbitrary Lagrangian-Eulerian (ALE)

representation of interfaces. ALE techniques represent moving interfaces as movements

of an interface in a body fitted mesh. Moving an interface in a body fitted mesh results

in distorted elements, and if elements are distorted to the point of having large aspect

ratios they will likely produce very inaccurate predictions. Moving interfaces in body

fitted meshes can also lead to inverted elements.

Techniques have been developed to mitigate the shortcomings of ALE techniques,

including using extra non-physical state variables to minimize element distortion over

the whole mesh and adaptive re-meshing. Both solutions, however, add significant

computational overhead and in the second case programmatic complexity. Further-

more, both solutions are limited in their abilities represent significant geometric changes.

Where traditional FEM falls short in it’s ability to represent arbitrary geometries XFEM

shows much promise. XFEM was originally developed for modeling crack propagation

[21, 48, 47], but the same framework has since been used for modeling other moving

interface phenomena such as a bubble moving through water [14]. Our XFEM imple-

mentation currently only involves one static levelset field. Extending our framework

to model any of the neglected moving interface phenomena would require the addition

of a second levelset field and both levelset fields must be made dynamic. Adding such

capabilities would take a significant amount of work, but would greatly increase the

predictive capabilities and utility of femdoc.
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7.2 Conclusions

Accurate modeling of complicated physical phenomena associated with battery

operation requires a detailed understanding mechanisms involved. Via research several

of the physical mechanisms involved in battery operation have been identified. The

majority of the work within was motivated by desire to develop techniques for using

silicon as an anode host material in lithium ion batteries. The major challenges of using

silicon as an anode material are associated with the significant volume change caused by

lithiation; we have chosen to focus on modeling highly coupled transport and mechanics.

As mechanics is a vast field and the mechanics associated with silicon lithiation involves

many areas of the field, we further narrowed the focus to highly coupled transport and

equilibrium elasticity. Several of the physical mechanisms involved in battery opera-

tion have been ignored including: plasticity, fracture mechanics, multi-phase diffusion,

solid electrolyte interface layer (SEI) growth, dendrite growth, thermal degradation.

As discussed in the previous section our XFEM framework gives an very flexible tool

for modeling discrete arbitrary interfaces, which, as an extension of the works within,

could be adapted for modeling some of the neglected phenomena that involve moving

interfaces.

Mathematical models of coupled “species/ion transport-elastic mechanics” and

“host material-electrolyte” interface kinetics have been implemented in a finite element

framework with XFEM extensions. The models were thoroughly verified against nu-

merous analytical solutions and published results of other similar numerical models,

but there is a glaring lack of model validation. This was due to a lack of published

experimental works that adequately demonstrate the phenomena of interest. To add

value to the models in the form of credibility a future researcher could work with an

experimentalist to develop validation studies.

As many authors only consider linear elasticity, it has been demonstrated that
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they are cases in which linear elasticity provides adequate results, but when model-

ing systems which undergo ∼100% volume change linear elasticity can’t be counted on

to adequately predict the behavior. Meshing is one of the major challenges of using

traditional FEM for modeling complex or varied geometries, so various examples were

used demonstrate how our XFEM framework mitigates those challenges. Host material

lithiation behavior can be very sensitive to geometry changes, so the author believes

that the XFEM capabilities add great utility for researchers interested in finding “op-

timal” geometries. The works documented within advance the battery community by

providing novel modeling capabilities, as well as a clean formalism that can aid in the

development future modeling capabilities. It is hoped that the developed tools will en-

able future researchers gain a deeper insight into physical phenomena and to develop

next generation battery technologies.
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Chapter 8

Appendix

8.1 Appendix A: Transformation Rules

Table 8.1: Stress Transformation Rules

σ P S Pe Se

σ σ J−1PFT J−1FSFT J−ePeFeT J−eFeSeFeT

P JσF−T P FS JCPeF−CT JCFeSeF−CT

S JF−1σF−T F−1P S JCF−1PeF−CT JCF−CPeF−CT

Pe JeσF−eT J−CPFCT J−CFSFCT Pe FeSe

Se JeF−eσF−eT J−CF−ePFCT J−CFCSFCT F−ePe Se

Table 8.2: Other Transformation Rules

∇0 = FT∇

C = det (F) c

J = det (F)F−1j

8.2 Appendix B: Nonlinear Elastic Models

The Saint-Venant Kirchhoff model [8, 33]

Ψ(Eij) = µ0 (EijEji) +
λ0
2
(Eii)

2 (8.1)
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Ψ (Cij) =
µ0
4

(CijCji − 2Cii + 3) +
λ0
8
(Cii − 3)2 (8.2)

Sij = 2µ0Eij + λ0Ekkδij (8.3)

Sij = µ0 (Cij − δij) +
λ0
2

(Ckk − 3) δij (8.4)

The Neo-Hookean material model of Belytchko et al. [8]

Ψ = µ0

2 (I1 − 3)− µ0 ln (J) +
1
2λ0 ln (J)

2 (8.5)

⇒ Sij = µ0δij + (−µ0 + λ0 · ln (J))C−1
ij (8.6)

The Neo-Hookean material model of ANSYS [2]

Ψ = µ0

2

(
Ī1 − 3

)
+ κ0

2 (J − 1)2 (8.7)

⇒ Sij = µ0J
−2/3δij +

(

−µ0

3 I1J
−2/3 + κ0

(
J2 − J

))

C−1
ij (8.8)

The Mooney-Rivlin material model [6, 1]

Ψ = C1

(
Ī1 − 3

)
+C2

(
Ī2 − 3

)
+ κ0

2 (J − 1)2 (8.9)

⇒ Sij = 2






(
C1J

−2/3 + C2I1J
−4/3

)
δij − C2J

−4/3Cij+

(
−1
3

(
C1I1J

−2/3 + 2C2I2J
−4/3

)
+ κ0

2

(
J2 − J

))
C−1
ij




 (8.10)

where

µ0 = 2 (C1 + C2) (8.11)

The Arruda-Boyce material model [2]

Ψ = µ0

5∑

i=1

Ci

λ2i−2
m

(
Īi1 − 3i

)
+ κ0

2

(
J2 − 1

2
− ln (J)

)

(8.12)

⇒ Sij = γJ−2/3δij +
(
−1
3 γI1J

−2/3 + κ0
2

(
J2 − 1

))

C−1
ij (8.13)

where

γ = 2µ0

5∑

i=1

iCi

λ2i−2
m

Īi−1
1 (8.14)

and

Ci =

[

1
2

1
20

11
1050

19
7000

519
637350

]

(8.15)
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The Gent material model [2]

Ψ = −µ0

2 Jm ln

(

1− Ī1 − 3

Jm

)

+ κ0
2

(
J2 − 1

2
− ln (J)

)

(8.16)

⇒ Sij = γJ−2/3δij +
(
−1
3 γI1J

−2/3 + κ0
2

(
J2 − 1

))

C−1
ij (8.17)

where

γ =
µ0Jm

Jm + 3− Ī1
(8.18)
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8.3 Appendix C: Chemical Potential Functions

Simple Uncoupled Chemical Potential

µc = µc0 +RgT ln (c) (8.19)

Simple Stress Coupled Chemical Potential

µc = µc0 +RgT ln (c)− Ωσh (8.20)

Haftbaradaran Stress Coupled Chemical Potential [32]

µc = µc0 +RgT ln

(
c/cmax

1 + c/cmax

)

− Ωσh +RgT ln

(
γs
γv

)

(8.21)

Flory-Huggins Incompressible Stress Coupled Chemical Potential [34]

µ = RgT

[

ln

(
ΩC

1 + ΩC

)

+
1

1 + ΩC
+

χ

(1 + ΩC)2

]

− Ωpo (8.22)
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8.4 Appendix D: Symbols

Table 8.3: Material Properties and Constants

Symbol Typical Units Description

C Pa 4th order elasticity tensor

E Pa Young’s modulus

λ0 Pa Lamé’s first parameter

µ0 Pa Shear modulus

λmab - Arruda-Boyce stretch limiting parameter

λmg - Gent stretch limiting parameter

τ0 N/m Initial surface stress tensor

Ks N/m 4th order surface elasticity tensor

τ0 N/m Initial surface stress constant (sphere-symmetric)

κs N/m Surface elasticity constant (sphere-symmetric)

ω m3/mol 2nd order stretch constitutive tensor

ω m3/mol Isotropic stretch coefficient

Ω m3/mol Partial molar volume

D m2/s Diffusion coefficient

cmax mol/m3 Maximum concentration

ks m2.5/
(
mol0.5s

)
Surface reaction rate

z - Ion valence number

k S/m Electrical conductivity

T K Absolute temperature

Rg J/ (Kmol) Ideal gas constant

µc0 J/mol Initial chemical/electrochemical potential

F C/mol Faraday’s constant
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αa&αc - Transfer coefficients

Table 8.4: Variables

Symbol Typical Units Description

t s Time

x m Coordinate vector

X m Material coordinate vector

n - Surface normal vector

n0 - Material surface normal vector

u m Displacement vector

v m Velocity vector

∇ 1/m Gradient operator

∇0 1/m Material gradient operator

H - Displacement gradient tensor

F - Deformation gradient tensor

FC - Species/Ion swelling deformation gradient tensor

Fe - Elastic deformation gradient tensor

J - Deformation gradient determinant

JC - Species/Ion swelling deformation gradient determinant

Je - Elastic deformation gradient determinant

C - Right Cauchy-Green deformation tensor

Ce - Elastic right Cauchy-Green deformation tensor

σ Pa Cauchy stress tensor

σh Pa Hydrostatic stress

pi Pa Indeterminant pressure

P Pa Nominal stress tensor
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Pe Pa Elastic nominal stress tensor

S Pa PK2 stress tensor

Se Pa Elastic PK2 stress tensor

c mol/m3 Species/Ion concentration

C mol/m3 Nominal species/ion concentration

j mol/m2/s Species/Ion flux

J mol/m2/s Species/Ion nominal flux

µc J/mol Chemical/Electrochemical potential

φ V Electric potential

i V/m Electric field vector

I V/m Nominal electric field vector
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